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Abstract 
Over the years, due to the increasing road density and intensive road traffic, the 

need for automobile navigation has increased not just for providing location awareness 

but also for enhancing vehicular control, safety and overall performance. The declining 

cost of Global Positioning System (GPS) receivers has rendered them attractive for 

automobile navigation applications. GPS provides position and velocity information to 

automobile users. As a result, most of the present civilian automobile navigation devices 

are based on GPS technology. However, in the event of GPS signal loss, blockage by 

foliage, concrete overpasses, dense urban developments viz. tall buildings or tunnels and 

attenuation, these devices fail to perform accurately. An alternative to GPS that can be 

used in automobile navigation is an Inertial Navigation System (INS). INS is a self-

contained system that is not affected by external disturbances. It comprises inertial 

sensors such as three gyroscopes and three accelerometers. Although low-grade, low-

cost INS performance deteriorates in the long run as they suffer from accumulated 

errors, they can provide adequate navigational solution for short periods of time. An 

integrated GPS/INS system therefore has the potential to provide better positional 

information over short and long intervals. 

The main objective of this research was to implement a real-time navigation 

system solution on a low cost embedded platform so that it can be used as a design 

framework and reference for similar embedded applications. An integrated GPS/INS 

system with closed loop decentralized Kalman filtering technique is designed using 

trajectory data from low-cost GPS, accelerometer and gyroscope sensors. A data pre­

processing technique based on a wavelet de-noising algorithm is implemented. It uses up 

to five levels of de-composition and reconstruction with non-linear thresholding on each 

level. The design is described in software which consists of an embedded 

microprocessor namely MicroBlaze that manages the control process and executes the 

algorithm. 

In order to develop an efficient implementation, floating-point computations are 

carried out using the floating point unit (FPU) of MicroBlaze soft core processor. The 
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system is implemented on a Xilinx Spartan-3 Field Programmable Gate Array (FPGA) 

containing 200 thousands gates clocked by an onboard oscillator operating at 50 MHz, 

with an external asynchronous SRAM memory of 1 MiB. The system also includes the 

IBM CoreConnect On-Chip Peripheral Bus (OPB). As such the final solution for vehicle 

navigation system is expected to have features like low power consumption, light 

weight, real-time processing capability and small chip area. From a development point 

of view, the combination of the standard C programming language and a soft processor 

running on an FPGA gives the user a powerful yet flexible platform for any application 

prototyping. 

Results show that a purely software implementation of the decentralized closed 

loop Kalman filter algorithm embedded platform that uses single precision floating point 

numbers can produce acceptable results relative to those obtained from a desktop PC 

platform that uses double precision floating point numbers. At first, the Kalman filter 

code is executed from a 1 MiB external SRAM supported by 8KiB of data cache and 

4KiB of instruction cache. Then, the same code is run from high speed 64KiB on-chip 

Block RAM. In the two memory configurations, the maximum sampling frequencies at 

which the code can be executed are 80 Hz (period of 12.5 ms) and 119 Hz (period of 8.4 

ms) respectively, while accelerometer and gyroscope sensors provide data at 75 Hz. The 

same two memory configurations are employed in executing a wavelet de-noising 

algorithm with 5 levels of de-composition, reconstruction and non linear thresholding on 

each level. Accelerometer and gyroscope raw data are processed in real-time using non-

overlapping windows of 75 samples. The execution latencies in the two cases are found 

to be 5.47 ms and 1.96 ms respectively. Additionally, from the post synthesis timing 

analyses, the critical frequencies for the two hardware configurations were 63.3 MHz 

and 83.2 MHz, an enhancement of 26% and 66% respectively. Since the system operates 

at 50 MHz, there is thus an interesting processing margin available for further 

algorithmic enhancements. 

Thus, by employing the combination of a low cost embedded platform, a flexible 

development approach and a real-time solution, the implementation shown in this thesis 
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demonstrates that synthesizing a completely functional low-cost, outage-resilient, real­

time navigation solution for automotive applications is feasible. 

Keywords: FPGA, MicroBlaze, INS, mechanization, wavelet de-noising, automobile 

navigation, Kalman filtering. 
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Resume 
Au fil des annees, en raison de 1'augmentation de la densite routiere et l'intensite 

de la circulation, un systeme de navigation automobile devient necessaire. Ce systeme 

doit fournir non seulement l'emplacement du vehicule mais, surtout, augmentera le 

controle, la securite et la performance globale de l'automobile. La baisse du cout des 

recepteurs de Geo-Positionnement par Satellite (GPS) a vulgarise leur utilisation dans la 

navigation automobile. Le systeme GPS fournit les donnees de positionnement ainsi que 

l'information qui concerne la vitesse aux conducteurs. De ce fait, la plupart des 

dispositifs de navigation des automobiles civiles sont actuellement bases sur la 

technologie GPS. Cependant, en cas de perte du signal GPS par blocage par feuillage, 

passages en beton, dense agglomeration urbaine, grands immeubles, tunnels et dans le 

cas d'attenuation, ces dispositifs ne parviennent pas a fonctionner avec precision. Une 

solution alternative au GPS, qui peut etre utilisee dans la navigation automobile, est le 

systeme de navigation inertielle (INS). LTNS est un systeme autonome qui n'est pas 

affecte par des perturbations externes. II comprend des capteurs inertiels comme trois 

gyroscopes et trois accelerometres. Le cout des INS peut etre faible mais leur 

performance se deteriore a long terme car ils souffrent des erreurs accumulees. 

Cependant, il peut fournir des solutions precises sur de courts intervalles de temps. Un 

systeme integre de GPS/INS a faible cout a done le potentiel de fournir de meilleures 

informations de position pendant des intervalles courts et longs. 

L'objectif principal de cette recherche etait de mettre en place une solution d'un 

systeme de navigation vehiculaire temps reel sur une plateforme embarquee a faible 

cout. Ceci avait pour but de pouvoir l'utiliser comme un cadre de conception, et comme 

reference pour d'autres applications embarquees similaires. Pour ameliorer la solution de 

navigation meme en cas d'arret de fonctionnement du GPS, les donnees du systeme 

GPS/INS ont ete fusionnees par la technique de la boucle fermee du filtrage de Kalman 

decentralise en utilisant 15 equations d'etats d'erreurs d'INS. En raison de l'utilisation 

d'accelerometre a faible cout, ainsi que des capteurs gyroscopiques de donnees, une 

technique de pretraitement nommee algorithme de debruitage par ondelettes a ete 
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adoptee. L'algorithme a un maximum de 5 niveaux de decomposition, de reconstruction, 

ainsi que du seuillage non lineaire a chaque niveau. La conception est decrite par un 

logiciel qui comprend un microprocesseur embarque. L'implementation est effectuee a 

l'aide d'un cceur du processeur MicroBlaze qui gere le processus de controle et execute 

l'algorithme. 

Afin de developper une implementation efficace, des calculs en virgule flottante 

sont effectues en utilisant 1'unite de virgule flottante (FPU) du coeur du processeur 

Microblaze. Le systeme est implemented sur carte FPGA Spartan-3 de Xilinx. Elle 

contient 200 mille portes logiques cadencees par un oscillateur a 50 MHz, avec une 

memoire externe asynchrone SRAM de 1 Mio. Le systeme comprend egalement un bus 

peripherique sur puce (OPB). A ce titre, la solution finale du systeme de navigation 

automobile devrait avoir des caracteristiques telles qu'une faible consommation de 

puissance, un poids leger, une capacite de traitement en temps reel ainsi qu'un petit 

espace occupe sur puce. D'un point de vue developpement, l'utilisation du langage C et 

d'un coeur de processeur fonctionnant sur FPGA donne a l'utilisateur une plateforme 

flexible pour tout prototypage d'applications. 

Les simulations montrent qu'une implementation purement logicielle de 

l'algorithme de la boucle fermee du filtrage de Kalman decentralise sur une plateforme 

embarquee qui utilise les nombres virgule-flottante a simple precision, peut produire des 

resultats acceptables. Ceci est conforme aux resultats obtenus sur une plateforme d'un 

ordinateur de bureau qui utilise les nombres virgule-flottante a double precision. Dans 

un premier temps, le code du filtrage de Kalman est execute a partir d'une memoire 

externe SRAM de 1 Mio, soutenue par une memoire cache de donnees de 8Kio et une 

cache d'instructions de 4 Kio. Puis, le meme code est lance a partir du bloc RAM sur 

puce, a grande vitesse, de 64 Kio. Dans les deux configurations memoire, les frequences 

d'echantillonnage maximales pour lesquelles le code peut etre execute sont de 80 Hz 

(periode de 12,5 ms) et 119 Hz (periode de 8,4 ms), respectivement, tandis que les 

capteurs fournissent les donnees a 75 Hz. Les meme deux configurations de memoire 

sont employees dans l'execution de l'algorithme de debruitage par ondelettes avec 5 
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niveaux de decomposition, de reconstruction et seuillage non lineaire a chaque niveau. 

Sur l'accelerometre et le gyro, les donnees brutes sont fournies en temps reel en utilisant 

un mode de fenetre de non-chevauchement, avec une longueur de fenetre de 75 

echantillons. Les latences d'execution dans les deux cas sont 5,47 ms et 1,96 ms pour les 

deux configurations de memoire precedemment citees, respectivement. En outre, 

l'analyse temporelle de l'apres synthese des deux configurations materielles, reporte des 

apports de 26% et 66% respectivement. Puisque le systeme fonctionne a 50 MHz, il y a 

ainsi une marge de manoeuvre disponible interessante pour des perfectionnements 

algorithmiques. 

Ainsi, en utilisant la combinaison d'une plate-forme peu couteuse, une approche 

flexible de developpement et une solution en temps reel, l'execution montree dans ce 

memoire demontre que la synthese d'une solution finale de navigation vehiculaire 

fonctionnant en temps reel, completement fonctionnelle, panne-resiliente, peu couteuse 

est faisable. 

Mots-cles: FPGA, Microblaze, INS, mecanisation, debruitage par ondelettes, navigation 

automobile, filtrage de Kalman. 
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Condense en frangais 
Les systemes de navigation ont toujours ete essentiels pour les vehicules aeriens 

et marins. Au cours des dernieres annees, on a observe une augmentation importante de 

la densite routiere et de l'intensite de la circulation. Les besoins en systemes de 

navigation pour les automobiles ont done augmente considerablement pour la 

localisation, la securite, le controle et la performance. La disponibilite d'une technologie 

appropriee doit permette d'offrir un produit a prix modere comme systeme de navigation 

automobile [1]. Ainsi, cette composante deviendra une partie integrate de l'industrie 

automobile et un choix attrayant a prix raisonnable pour le consommateur. 

Avec l'avancement de la technologie, la navigation automobile est devenue une 

preoccupation de plus en plus pressante. En merae temps, la baisse du cout des 

recepteurs de geo-positionnement par satellite (GPS) a generalise leur utilisation dans la 

navigation automobile. Particulierement durant la derniere decennie, le prix des 

receveurs GPS a ete rendu plus interessant pour les consommateurs. Ainsi le GPS est un 

systeme de navigation precis pour determiner la position et la vitesse du vehicule [2]. 

Aujourd'hui la plupart des automobiles utilisent la technologie GPS. Cependant, dans le 

cas de perte, de blocage et d'attenuation des signaux GPS, si ceux-ci ne fonctionnent pas 

correctement, il en resulte alors une panne. Les pannes temporaires des signaux GPS 

peuvent etre causees par les forets, les gratte-ciel, les agglomerations urbaines, les 

tunnels etc. et done necessitent un systeme alternatif pour la navigation d'automobile 

[3]. 

L'alternative au GPS, qui peut etre utilisee dans la navigation automobile, est le 

systeme de navigation inertielle (INS). Aujourd'hui presque tous les systemes INS sont 

constitues de deux parties : le mesureur inertiel (Inertial Measurement Unit - IMU) et 

l'ordinateur de navigation. L'IMU comprend des capteurs inertiels, qui sont en general 

trois gyroscopes et trois accelerometres montes orthogonalement dans un vehicule. 

L'IMU detecte et mesure les accelerations eprouvees et les degres de changement de 

direction dans le repere inertiel de la terre. L'ordinateur de navigation transforme ces 

mesures en un point de repere de navigation. De cette maniere, TINS permet de calculer 
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la position, la vitesse et la direction incremental du vehicule. Ainsi, en reunissant ces 

valeurs incrementales de position, vitesse et direction avec les valeurs initiales, la 

solution de navigation (position, vitesse et direction angulaire) peut etre determinee [4]. 

A l'inverse du GPS qui depend de l'aide de plusieurs satellites externe, TINS est 

un systeme autosuffisant qui n'est pas affecte par l'environnement. II possede une 

excellente performance a court terme. Toutefois, les capteurs accelerometres et les 

capteurs gyroscope sont dispendieux, surtout pour les modeles tres performants. Les 

IMUs les moins chers peuvent fournir une solution de navigation provisoire et il s'en 

suit une accumulation d'erreurs et une performance inferieure [4]. 

Dans la plupart des cas, le probleme du GPS comme systeme de navigation 

autonome peut etre surmonte pour une courte periode par un systeme integre GPS et 

INS. Ainsi, l'idee principale est d'utiliser les deux systemes (GPS et INS) ensemble. 

Dans ce systeme integre, on utilise normalement la solution fournie par GPS. En meme 

temps, TINS continue a calculer la position, la vitesse et la direction. En presence d'une 

panne de GPS, la solution est alors fournie par TINS. Ceci est la plus simple maniere 

d'integrer les deux systemes. 

Pour obtenir encore un meilleur resultat quand il y a une panne de GPS, on 

utilise le filtrage de Kalman sur les donnees de GPS et d'INS. Le filtrage de Kalman 

comprend un modele dynamique des erreurs de GPS et d'INS, un modele stochastique 

des erreurs des capteurs et aussi des valeurs initiales des donnees reliees avec le systeme 

GPS et INS. Durant une panne de GPS, le filtrage de Kalman prevoit les erreurs de 

position, de vitesse et de direction d'INS. En corrigeant ces erreurs, la solution de 

navigation est grandement amelioree [4]. 

A l'inverse du GPS, TINS est exempte du blocage des signaux. Mais quand le 

GPS tombe en panne, la performance d'INS baisse progressivement s'il contient des 

capteurs accelerometres et des capteurs gyroscopes de faible qualite. Plusieurs 

techniques de debruitage ont ete proposees afin d'ameliorer les sorties des 

accelerometres et gyroscopes dont le debruitage par ondelettes [5]. 
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L'objectif general de cette recherche est de mettre en place une solution d'un 

systeme de navigation vehiculaire temps reel sur une plateforme FPGA Spartan-3 

utilisant le coeur de processeur MicroBlaze. Les objectifs specifiques de cette recherche 

peuvent etre resumes comme suit: 

Objectif 1: Implementer les algorithmes introduits dans la section 1.1 de ce 

memoire utilisant le coeur de processeur Microblaze de Xilinx. Cette approche est 

particulierement avantageuse au chapitre du cout. 

Les capteurs GPS fournissent 3 positions et 3 vitesses directement. Par contre, 

les capteurs IMUs (les capteurs accelerometres et gyroscopes) fournissent 3 

accelerations et 3 vitesses angulaires par rapport au referentiel «Corps de l'automobile» 

(body frame). Idealement, le systeme GPS/INS integre inclut les 3 etapes suivantes: 

a) Debruitage de donnees brutes qui sont fournies par les capteurs IMUs. 

b) Transformation 2D ou 3D («Mecanisation 2D» ou «Mecanisation 3D») qui 

convertissent les accelerations lineaires et les taux de rotation du referentiel du vehicule 

a celui de navigation dans le but d'obtenir les informations de position, vitesse et 

direction. 

c) Fusionnement du systeme GPS/INS par la technique de la boucle fermee et 

decentralisee du filtrage de Kalman. 

Ainsi, le but etait d'implementer un ordinateur de navigation (NCU) qui peut 

executer les trois techniques mentionnees ci-dessus en utilisant les donnees fournies par 

des capteurs accelerometres et gyroscopes. Plus particulierement, le but etait 

d'implementer un ordinateur de navigation sur une plate-forme moins couteuse au lieu 

d'un microprocesseur de bureau (qui coute plus cher) qui utilise les nombres virgule-

flottante a double precision. 

Objectif 2: Fournir une analyse de resultat comparative (c.a.d. une solution de 

navigation: position et vitesse) d'implementation de systeme GPS/INS integree entre les 

plateformes «Embarquee» et «Microprocesseur». A cet egard, l'utilisation des 

ressources de systeme embarque montre la simplicite de 1'application de navigation 

d'automobile, de meme que son aspect contact en surface necessaire. 
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Objectif 3: Fournir une solution de systeme GPS/INS integre de navigation en 

temps reel pour ces types d'application specifiques. 

Objectif 4: Presenter 1'implementation d'un systeme GPS/INS integre de telle 

maniere qu'elle puisse etre employee comme un cadre generique pour 1'implementation 

des algorithmes de navigation. Ce cadre integre la prise en charge de l'algorithme de 

debruitage de donnees d'IMU. Ce dernier s'avere efficace malgre sa complexite 

relativement a l'algorithme Fast Orthogonal Search (FOS) [5]. Cette technique de 

debruitage spectral presente une haute resolution pour les donnees d'IMU sur 

technologie MEMS. Aussi, ce cadre inclut egalement la technique d'integration de 

GPS/INS pour resoudre des pannes de GPS avec une plus longue duree en utilisant la 

methode par reseaux de neurones artificiels qui est en phase de recherche et 

developpement [5] [6]. 

Pour ce projet de recherche, la carte Spartan-3 developpee par Digilent inc. a ete 

principalement utilisee. Cette plate-forme de developpement inclut un FPGA Spartan-3 

de Xilinx qui contient 200 mille portes logiques cadencees par un oscillateur a 50 MHz, 

avec une memoire externe asynchrone SRAM de 1 Mio. Elle contient aussi une interface 

UART (port serie), un port JTAG, un port VGA ainsi que plusieurs autres interfaces 

(port PS/2, boutons, etc.) [22]. Elle peut done supporter des circuits de complexite 

variee, ainsi que des processeurs embarques. 

Dans une etape plus avancee de 1'implementation et pour rendre l'execution du 

code plus rapide, la carte FPGA Xilinx University Program (XUP) Virtex-II Pro a ete 

utilisee et elle comporte une quantite superieure de Block RAM. II s'agit d'une plate-

forme haute performance Virtex-II Pro FPGA entouree par un nombre de peripheriques. 

Pour cette recherche, nous avons utilise specifiquement le port serie, le port JTAG et le 

generateur d'horloge [23]. 

L'une des motivations pour utiliser un coeur de processeur logiciel est son faible 

cout. En effet, un processeur MicroBlaze ne coute que $0.48 US. Par contre, les micro-

processeurs qu'on trouve habituellement dans les postes de travail coutent plusieurs 
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centaines de dollar. De plus, la plate-forme FPGA utilisee coute moins de $2.00 US, ce 

qui en fait une solution abordable pour les applications de navigation automobile [26]. 

Le microcontroleur MicroBlaze est une solution integree toute designee pour 

1'implementation d'un controleur embarque. Le coeur de processeur logiciel MicroBlaze 

embarque est un processeur 32-bit suivant une architecture Harvard. L'architecture 

Harvard separe physiquement la memoire de donnees et la memoire programme. 

L'acces a chacune des deux memoires s'effectue via deux bus distincts. Le processeur 

MicroBlaze suit aussi une architecture RISC optimisee pour implementation dans les 

FPGA de Xilinx. Une fois implements, le processeur est programme sur la carte FPGA. 

Le processeur MicroBlaze est aussi configurable. II permet aux utilisateurs de choisir 

uniquement les fonctionnalites dont ils ont besoin [24]. 

Le «Wizard Base System Builder» (BSB), module de l'outil EDK, a ete utilise 

pour construire le systeme materiel fonctionnel dedie pour la carte Spartan-3. Le BSB a 

ete employe pour developper la plateforme matedelle dans le but de l'integrer au logiciel 

de navigation developpe dans ce memoire. En remplacement d'un systeme 

d'exploitation embarque tel que XilKernel ou ucLinux, une plateforme autonome a ete 

retenu. 

Le nombre de cycles necessaires a ete mesure en utilisant un compteur watch­

dog connecte avec le port de gestion des interruptions du MicroBlaze. Cette approche est 

plus precise que celle du profilage du code utilisant l'outil GCC/GPROF d'EDK. 

Plusieurs recherches ont ete conduites en vue de bien comprendre les algorithmes 

existants relies au systeme GPS/INS et les traitements des donnees fournies par 1'IMU. 

Le chapitre 2 de ce memoire synthetise l'etat de l'art dans ce domaine. L'etude des 

connaissances a permis de retenir le model de filtrage de Kalman, base sur une boucle 

fermee decentralisee. Ce modele se base sur une equation a 15 etats pour modeliser les 

erreurs d'INS. 

Le chapitre 3 presente le travail realise qui consistait a calibrer les parametres de 

filtrage de Kalman dans le but de valider le modele pour un cas de simulation de panne 

de GPS d'une dure de 20 seconds. En parallele, une implementation d'algorithmes de 
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debruitage par ondelettes a ete faite pour les donnees d'IMU. V implementation de ces 

algorithmes a ete faite sur la plate-forme MicroBlaze. 

Le chapitre 4 presente les resultats de 1'implementation embarquee decrite au 

chapitre 3. II debute par l'examen des sorties d'application embarquee (des algorithmes 

de navigation) en comparaison a ceux executes sur une plateforme d'ordinateur de 

bureau a l'aide de l'outil Matlab. Ensuite, on y trouve une discussion des performances 

temporelles des applications de navigation embarquee. Enfin, le chapitre resume 

l'utilisation de materiel par les applications embarquees dans ce memoire. 

Les figures 4.1 et 4.2 montrent la comparaison des sorties de la «Mecanisation 

2D» de position d'une automobile pendant la panne de GPS forcee pendant une periode 

de 20 secondes respectivement entre le modele de Matlab et celui du MicroBlaze. La 

figure 4.2 illustre le probleme de precision lie a une representation 32 bits a virgule 

flottante. Elle demontre que dans un intervalle etendu 1'increment de position de 

l'automobile a chaque 1/75 seconde n'est pas suffisamment grand pour etre ajoute a une 

grande quantite de latitude et de longitude. 

D'ailleurs, dans le calcul de latitude et de longitude, les points de reference sont 

sur l'equateur (latitude zero) et sur le meridien de Greenwich (longitude zero) 

respectivement. Les donnees de trajectoire de navigation utilisees ont ete rassemblees de 

l'essai sur route effectue autour de la ville de Kingston, Ontario, Canada [28]. Cet 

endroit est loin de l'equateur et meme plus loin de la ligne de meridien de Greenwich. 

La figure 3.6 montre que pendant la panne de GPS, le vehicule se dirigeait vers le nord. 

Ainsi le changement de la position vers la direction est-ouest dans chaque 1/75 seconde 

a ete trop peu compare a la grande distance de la ligne meridienne. En revanche, la 

figure 4.1 montre une croissance accumulee des erreurs, et l'effet du calcul d'addition 

est evident. 

Les resultats de 1'experimentation sur la nouvelle plateforme embarquee avec un 

algorithme simple tel que la mecanisation 2D sont concluants. Ces resultats nous ont 

permis d'adresser le probleme lie a la precision dans le calcul des solutions de 

navigation. Afin de surmonter ce probleme, un point local a ete retenu comme reference 
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dans le but de minimiser la distance de reference et de faciliter l'ajout d'increments les 

plus petits possible. 

Les figures 4.3 et 4.4 montrent les schemas des sorties de la «Mecanisation 2D», 

«Mecanisation 3D» et du filtrage de Kalman fonctionnant sur la plateforme MicroBlaze. 

II reste evident que la performance des sorties relative au reference GPS de 

«Mecanisation 3D» excede celle de «Mecanisation 2D» alors que le filtrage de Kalman 

depasse celle de la «Mecanisation 3D». 

En examinant le schema PSD de figure 4.11 (debruitage par ondelettes 

fonctionnant sur le coeur de processeur MicroBlaze), on peut non seulement attenuer des 

erreurs a court terme existant au dela de 2Hz, mais egalement rejeter une partie des 

erreurs a long terme dans le spectre au-dessous d'elle. 

Les figures 4.7, 4.8 et 4.12 montrent les sorties de MicroBlaze par rapport aux 

resultats obtenus d'une modelisation Matlab a haut niveau. Les figures 4.5 et 4.6 

illustrent 1'implementation dans des ordinateurs de navigation. Les figures 4.10, 4.11 et 

4.14 montrent les resultats d'implementation de debruitage par ondelettes sur 

MicroBlaze pour les donnees d'IMU. 

Le temps d'execution du code sur MicroBlaze pour deux configurations de 

memoires separees a ete mesure (voir tableaux 4.1 et 4.2). L'execution dans un bloc de 

RAM s'avere plus rapide que celle sur la memoire externe de SRAM. 

Le coeur de processeur logiciel MicroBlaze a ete utilise avec succes parce qu'il 

offre la flexibilite d'implementer arbitrairement des algorithmes en utilisant un langage 

de programmation de haut niveau tel que le langage C. Ceci permet d'eviter 1'utilisation 

extensive d'autres langages de programmation de bas niveau comme HDL. Par 

consequent, 1' usage du MicroBlaze reduit significativement la complexite et le temps de 

developpement en comparaison avec d'autres approches. 

Le chapitre 5 presente les conclusions de la methodologie d'implementation 

presentee dans ce memoire. H fournit quelques recommandations dans le but d'une 

utilisation comme cadre de conception pour les futures applications embarquees de 

meme nature. 
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Ce travail a permis de demontrer qu'une implementation peu couteuse est 

possible pour un systeme embarque de navigation automobile. Cette implementation, qui 

utilise une approche flexible, fournit des sorties en temps reel. 

Les travaux decrits dans ce memoire constituent un cadre structure pour le 

developpement eventuel d'une solution complete et integree d'un produit commercial. 

Plusieurs equipes de chercheurs travaillent au developpement d'algorithmes 

d'integration INS/GPS et de modelisation d'erreur de 1'INS. La miniaturisation des 

senseurs INS creera par ailleurs des opportunites grandissantes, permettant de passer de 

la navigation vehiculaire a la navigation personnelle. 
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CHAPTER 1: Problem Statement 

1.1 Automobile Navigation 

Navigation systems have always been essential for the aerial and marine 

vehicles. However, over the years, due to the increasing road density and intensive road 

traffic, the need for automobile (land vehicle) navigation has increased not just by 

providing location awareness but also by enhancing the vehicular control, safety and 

overall performance significantly [1]. Availability of appropriate technology is enabling 

light and affordable (low-cost) automobile navigational systems. In this way, it is 

becoming to be an attractive product in general consumer navigation market day by day 

and is expected to be an integral part of future automobile industry. 

1.1.1 GPS Navigation 

With the advancement of technology, automobile positioning and navigation has 

become an integral part of the automobile industry. The declining cost of GPS receivers 

over the past few decades has rendered Global Positioning System (GPS) attractive for 

automobile navigation applications. GPS provides position and velocity information to 

automobile users [2]. As a result, most of the present civilian automobile navigation 

devices are based on GPS technology. But, in the event of GPS signal loss, blockage and 

attenuation, these devices fail to perform accurately. GPS signal outages are usually 

caused by the obstruction by foliage, concrete overpasses, dense urban developments 

viz. tall buildings or tunnels. Thus, an alternative method for determining position in 

automobile navigation becomes necessary. 

1.1.2 Inertial Navigation System 

The suitable method which is widely used in this regard is Inertial Navigation 

System (INS). In modern days, almost all INS systems are Strap-down Inertial 

Navigation System (SINS) and they have the following two components: 

a) Inertial Measurement Unit (IMU): It comprises inertial sensors such as three 

gyroscopes ('gyro' in short) and three accelerometers. The assembly of three gyro 

sensors and accelerometer sensors mounted orthogonally and located inside a moving 
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platform to calculate linear accelerations and angular velocities respectively is known as 

an Inertial Measurement Unit (EVIU). 

b) Navigation Computer: An EVIU detects the current acceleration and rate of change of 

attitude (i.e. pitch, roll and yaw rates) in the earth's inertial frame. ENS transforms 

accelerations and angular rates from inertial frame of reference to the navigation frame 

of the automobile and mathematically integrates to calculate the incremental position, 

velocity and attitude of the automobile. Then by summing up these incremental values 

of position, velocity and attitude with the initial values respectively, the navigational 

solution (i.e. position, velocity and attitude information) can be determined [4]. 

The terms Inertial Measurement Unit (IMU) and Inertial Navigation System 

(INS) are often confused. As mentioned above, an M U is an instrument that measures 

specific forces and angular rates relative to an inertial frame of reference using its three 

orthogonally placed accelerometer and gyro sensors. 

An INS contains an IMU as one of its components and also includes a 

computation unit namely NCU to derive meaningful navigation solution (position, 

velocity and attitude information) from EVIU measurements. Effort has been made to use 

the terms EVIU and INS in their proper context throughout this thesis. The term "EVIU 

sensors" has been used specifically to refer to inertial sensors, also known as 

accelerometer and gyro sensors. 

Unlike GPS which depends on external satellite aiding, INS is a self-contained 

system and is not affected by any external disturbances. It has a good short-term 

performance. But EVIUs (accelerometer and gyro sensors) tend to be expensive and their 

performance and cost varies depending on their grade. Low-grade EVIUs can provide 

navigational solution for a shorter period of time and their performance deteriorates 

immensely in the long run as they suffer from accumulated error. While calculating a 

navigational solution, measurement noise of low grade EVIU sensors is accumulated as 

error and it increases dramatically with the passage of time. This leads to an ever 

increasing error in the navigational solution in the long-term. 
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1.1.3 GPS/INS Integration 

In most cases, the problems of GPS as a stand-alone navigation system can be 

overcome at least for a short period of time by a GPS/INS integrated system. The main 

idea is to use both GPS and IMU devices together. In this integrated system, GPS signal 

data is used when it is available (i.e. there is no GPS signal outage and the signal is in 

the least erroneous state) to obtain position and velocity information. In the mean time, 

the INS in real-time mode continues to calculate the position, velocity and attitude. But 

as soon as an outage of GPS data is detected, the navigational solution from INS is put 

into use. This is the simplest possible way of integrating the two systems. 

To improve navigational solution even further during a GPS outage, GPS/INS 

data is fused by any one of several optimal estimation techniques. They are Kalman 

filtering (KF), artificial neural network etc. KF uses dynamic model of INS and GPS 

errors, stochastic model of the inertial sensor errors and prior information about the co-

variances of the data provided by the systems [4]. In this way, while there is no GPS 

outage, using several initial error characteristics, the filter models the overall system 

error characteristics. During a GPS outage, KF predicts or estimates the future position, 

velocity and attitude errors and also the output of the inertial sensors (accelerometer and 

gyro sensors). By correcting these errors, the overall navigational solution can be 

improved. 

1.1.4 IMU Sensor De-noising 

INS is inherently immune to the signal jamming and blockage vulnerabilities of 

GPS. But as the time progresses (during a GPS signal outage while using INS solution), 

the performance of the INS degrades while using low grade accelerometer and gyro 

sensors. The accuracy of low-grade INS is significantly affected by the low and high 

frequency noise characteristics of its inertia! sensors. One of the techniques to improve 

the accuracy of the raw data of accelerometer and gyro sensors is to use a de-noising 

technique [5]. By pre-processing the EMU data using a de-noising technique, the effect 

of complex short-term (high frequency) and long-term (low frequency) noise 

characteristics produced by different error sources is reduced considerably. 
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1.2 Research Focus 

The main objective of this research is to introduce a real-time implementation of 

GPS/INS integration module for land vehicles applications on the Xilinx MicroBlaze 

soft core processor (SCP) running on a low-cost Spartan-3 FPGA platform. 

The research objectives of this thesis can be summarized as follows: 

1.2.1 Objective 1 

To implement algorithms introduced in the section 1.1 of the thesis using low 

cost Xilinx MicroBlaze SCP embedded on a low cost Spartan-3 FPGA. Most of the GPS 

devices provide directly 3 velocities and 3 positions. In contrast, the low-grade Micro-

Electro-Mechanical-System (MEMS) based IMUs (accelerometer and gyro sensors) 

provide raw data of 3 accelerations and 3 angular velocities in vehicle's body frame. In 

the simplest form, implementing a GPS/INS integrated system may include the 

following steps: 

a) Pre-processing raw IMU data: using a wavelet de-noising technique [6]. 

b) 2D and 3D Mechanization: converting the linear acceleration and rotation rates from 

the vehicle reference frame to position, velocity and attitude information in the 

navigation reference frame. 

c) GPS/INS data fusion: using KF. 

In short, the goal is to implement a NCU (Navigational Computing Unit) that 

executes the abovementioned techniques using the accelerometer and gyro sensor 

measurements along with an external GPS sensor data. More specifically, it was aimed 

to implement a NCU on a low cost embedded platform using low-cost sensor data, 

instead of an expensive microprocessor. 

1.2.2 Objective 2 

To provide a comparative output (i.e. navigational solution: position and 

velocity) analysis of GPS/INS integrated system implementation between the embedded 

platform and the microprocessor. In this regard, the use of embedded resources and its 

compact area utilization metrics show the simplicity of the automobile navigational 

application. 
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1.2.3 Objective3 
To provide a real-time navigational solution of the GPS/INS integrated system 

implementation. That is to say, the system accepts data in real-time mode and processes 

them. And then after a short time delay, it will provide the solution. To process data for 

such specific applications (GPS/INS integrated systems), the number of clock cycles is 

measured. And in that way, a timing analysis of the implementation is shown. 

1.2.4 Objective 4 

To present the GPS/INS integrated system implementation in such a way that it 

can be used as a model or generic platform/reference for the implementation of similar 

navigational algorithms which are still in research and development phase. This includes 

more effective and computationally complex IMU data pre-filtering algorithm such as 

the FOS (Fast Orthogonal Search) algorithm which is a high resolution spectral de-

noising of low-end (MEMS-based) inertial sensors [5]. It also includes GPS/INS 

integration technique for resolving GPS outages with longer duration using artificial 

neural network methodology which is under research and development stage [5][6]. 

1.3 Thesis Outline 

This Thesis is organized as follows. 

Chapter 2 presents relevant concepts for this thesis. It introduces the background 

information required and presents the necessary mathematical equations from 

implementation point of view to gain an appreciation for the work conducted in this 

thesis. It discusses the key concepts behind INS operation. IMU sensors (inertial 

sensors) and their errors are also discussed, and are followed by an elaborate discussion 

of the KF technique for GPS/INS integration. The chapter ends with a description of 

inertial sensor pre-filtering techniques such as wavelet de-noising. 

Chapter 3 begins with a summary of implementation environment, Spartan-3 

FPGA as embedded system platform and the SCP Xilinx MicroBlaze. The 

implementation methodology of the research that was used to develop the hardware and 

the software using the equations represented in chapter 2 is presented in details here. 
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Chapter 4 presents the result of the embedded implementation described in 

chapter 3. It discusses the timing performance of the embedded navigational application 

to validate the real-time operation capability of the implementation and its software 

profiling output. Subsequently, the chapter outlines the hardware utilization summary of 

the embedded software. This is followed by a discussion of all the abovementioned 

results. 

Chapter 5 draws main conclusions of the implementation methodology presented 

in this thesis. It provides some recommendations from the point of view of embedded 

implementation methodology for future designers and engineers who will be involved 

with similar kinds of implementation. 
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CHAPTER 2: Background on Vehicular Navigation 

In Chapter 1, the automobile navigation was introduced. In this chapter, the 

concepts will be further explored so that the subsequent chapters of the thesis become 

understandable. First, general information regarding GPS is presented, including its 

principles of operation as well as common sources of errors. Before presenting inertial 

navigation mechanization and error equations, various navigation frames (to which 

navigational information is defined), Earth's model (to define Earth's the variable 

geometry and gravity parameters) and required mathematical (mostly geometry and 

trigonometry) concepts related to attitude representation are discussed. Then, using the 

INS error equations, GPS/INS integration through Kalman filtering (KF) technique is 

presented. Finally the INS raw data pre-processing using wavelet de-noising 

method/technique is presented. The understanding and the mathematical equations 

required to construct an automobile Navigational Computing Unit (NCU) that has been 

carried out in the Implementation Methodology (chapter 3) of the thesis is presented in 

this chapter. 

2.1 Global Positioning System 

GPS stands for Global Positioning System. It is a satellite-based radio-navigation 

system that is able to calculate position on the Earth. It consisted of 24 satellites (in 

1993) orbiting at an altitude of 20200 kilometers in an approximate circular path around 

the Earth. According to Wikipedia, as of March 2008, there are 31 actively broadcasting 

satellites in the GPS constellation. GPS satellites are arranged so that a minimum of four 

satellites are placed in each of six Earth's orbital planes. In this way, four to ten satellites 

are always visible above an elevation angle of ten degrees from any place on earth. 

These satellites are continuously monitored by numerous worldwide ground stations. 

GPS satellites broadcast navigation messages and provide a 24-hour all-weather 

navigation service globally. GPS provides three different observations. They are pseudo­

code, carrier phase and phase rate (also known as Doppler). The position update 

measurements can be derived by solving either pseudo-code or carrier phase 
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observations from at least four satellites. Using phase rate or the Doppler frequency of 

the received signal, GPS receiver determines the receiver's velocity [7]. 

2.1.1 GPS Operation 

There are three main segments in the Global Positioning System namely Space, 

Control and User segment as shown in figure 2.1 (modified and reproduced from [8]). 

The Space Segment consists of orbiting satellites with antennas pointed towards the 

Earth that broadcast signals. Each satellite contains atomic clocks. The Control Segment 

which consists of worldwide base-stations that monitor the satellites to track their exact 

orbital position, altitude and speed in space and to make sure that they are operating 

correctly. The User Segment consists of available GPS receivers that detect, decode and 

process the signals received from the satellites. They are made up of hardware (also an 

antenna) and processing software for positioning, navigation and timing applications [7]. 

Figure 2.1: Space, Control and User segment of GPS. 

Determining an exact position at the intersection of three spheres using three 

range information and exact co-ordinate information of the satellites is illustrated in 

figure 2.2 (modified and reproduced from [8]). A GPS receiver's position is calculated 

from the intersection of the signal propagating sphere. Here, the GPS satellites are 

located at the center of the spheres whose radiuses are the receiver-satellite distances. 
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The signal transmitted by a GPS satellite is detected by the antenna of a GPS receiver 

and is processed accordingly. It receives a signal using direct line of sight with any GPS 

satellite and determines the required time (time difference) taken by the received signal 

to travel from the corresponding satellite. The apparent transmit time of the satellite 

signal from a GPS satellite to a specific receiver is used to calculate the range in that 

GPS receiver. Mathematically, range = time difference x speed of light. If the GPS 

receiver clock and the GPS satellites clocks were synchronized with each others, only 

three range observations would be required to compute the receiver coordinates in 3-D 

space as shown below. But in reality GPS receiver clocks are not as precise as the GPS 

satellite clocks. This causes time synchronization error known as receiver clock bias. A 

range measurement with an error in time synchronization is referred to as a pseudorange. 

Thus, GPS signal contains the pseudorange information and the respective satellite 

coordinates as a function of time [7]. 

;Kttdwn safellrte^coordinates 
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Figure 2.2: Illustration of Single Point Positioning using G P S . 

Pseudorange includes the calculation of the range and receiver clock bias. By 

using at least four such measurements and the satellite position, the equation is reduced 

to determining four unknowns. They are the receiver's three position co-ordinates and 
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clock bias. In this way, pseudorange is used in a least square parametric model to solve 

for four unknowns [2]: 

P,=J(x,-xH)2+(y,-yll)
2+(zl-zll)

2-b (2.1) 

where, i is the satellite index, 

P is the pseudo range (m) 

Xj, y , , zt are the coordinates of the /th satellite (m, m, m) 

Xi„ y u , Zu are the coordinates of user (m, m, m) 

2.1.2 Drawbacks of GPS 
GPS is able to provide precise positioning information to an unlimited number of 

users anywhere on the Earth. It is an absolute positioning system. Today, most vehicular 

(aerial, marine and also ground-based automobile) navigation systems rely mainly on the 

GPS receiver as it is a primary source of information to provide the position of the 

vehicle. [4]. Due to its availability through a comparatively low-cost and small-sized 

electronic receiver, the number of applications using GPS has increased dramatically 

over the last few years. However, under tunnels and overpasses, in downtown settings 

with high-rise buildings all around and in densely forest areas due to tall trees, the 

number of tracked satellites by a receiver may fall below four. This causes GPS outages 

when GPS receiver can no longer generate a navigation solution on its own. Thus, 

maintaining a direct line of sight between GPS receiver and with at least four GPS 

satellites is essential. In other words, without having a clear line of sight all the time 

between the satellite and the receiver, it is not possible to use GPS as a stand-alone 

navigation system for vehicular application [7]. The aftermath of a GPS outage can 

cause a discontinuity or a jump in the GPS carrier-phase measurement by an integer 

number of cycles and provide erroneous navigational solution. 

Apart from signal outages, there are generally six standard errors that GPS signal 

data might contain. They are ephemeris error, satellite clock error, receiver clock error, 

atmospheric disturbances, position dilution of precision (caused by poor geometry of the 

satellites in the sky) and multipath interference. They contribute to the degradation of 

the accuracy of the receiver's performance [9]. Some of these error effects can be 
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reduced by combining GPS control segment and user segment with a GPS receiver in 

real-time mode. 

The GPS control segment is made up of five monitor stations located around the 

world, four antennas and a Master Control Station (MCS) that tracks GPS satellites 

accurately. As the locations of the satellites are know by these stations precisely, an 

'inverted' positioning process calculates the orbital parameters of the satellites and 

broadcast it in a regular time interval to the GPS receivers to minimize the GPS error 

effects [3]. The GPS MCS processes measurements taken at the monitoring base stations 

and develops predictions for the orbits (satellite orbital models) and satellite clock 

behavior. Then it sends this data to the antennas for transmission to the satellites for 

broadcast to the GPS receivers [10]. In this way, ephemeris error and satellite clock 

errors are significantly reduced. 

In order to eliminate some more of those abovementioned errors, double 

differencing technique namely Differential Global Positioning System (DGPS) is used. 

DGPS is based on the simultaneous use of two or more receivers where one stationary 

reference or base receiver is located at a known location while the position of the other 

remote receiver is to be determined. The known position of the reference receiver is used 

to estimate corrections to the GPS derived position. These corrections are then 

transmitted to the remote receiver and thus the remote receiver computes position with 

more accuracy. DGSP employs the fact that GPS errors are very similar over a distance 

of up to several hundred km and ensures most of the time a meter level accuracy [2]. 

The atmospheric disturbance to the GPS signal propagation is countered to an extent by 

DGSP technique. 

GPS signals propagate in the form of microwave radio waves and get reflected 

by solid objects like buildings, large canopy etc. as they cannot penetrate them. As a 

result, instead of coming from direct line-of-sight, the GPS satellite signal can arrive to 

the GPS receiver from different paths of reflection. This phenomenon is called multipath 

interference and it results in the distortion in the range measurement. Its impact on the 
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measurements is uncorrelated between two receivers (or even among control segments) 

and thus cannot be reduced using DGPS [7]. 

2.2 Navigation Frame 

The various navigation frames to which the position information is defined are 

introduced in this section and presented in the figures 2.3 to 2.6 (all of them have been 

reproduced from [4][12]). These navigation co-ordinate systems are used in the 

subsequent sections to derive INS mechanization and KF equations. 

ze A 
Earth's center of Earth's center of 

mass Mean Greenwich 
Meridian 

X-axis is pointing 
towards vernal 

equinox Equ§ 

Figure 2.3: Inertial frame (/-frame). 

Equator 

Figure 2.4: Earth frame (e-frame). 

2.2.1 Inertial frame (/-frame) 

Inertial frame has its origin at the centre of the Earth and its axes are stationary 

(non-rotating) with respect to the fixed stars [11]. In this frame, the Z-axis is coincident 

with the Earth's polar axis, the X-axis points towards the mean vernal equinox and the Y-

axis points towards the direction to complete the right-handed orthogonal rule. All 

inertial sensors produce measurements relative to an inertial frame but resolved along 

the instrument-sensitive body frame [10]. 

2.2.2 Earth frame (e-frame) 

Like the inertial frame, e-frame has its origin at the centre of the Earth. The axes 

are fixed with respect to the Earth, in the figure 2.4 defined by the axes X*, T, 2? with 2? 

along the Earth's polar axis. The axis X* lies along the intersection of the plane of the 

Greenwich Meridian with the Earth's equatorial plane. The Y -̂axis points towards the 

direction to complete the right-handed orthogonal rule [11]. The Earth frame rotates with 

respect to the inertial frame at an angular rate coe = 2#/24 rad/hr ~ 157hr which is also 
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referred to as earth's rotation rate about the Z-axis. In other words, the Z* axis is parallel 

to the spin axis of the Earth. 

Figure 2.5: The local-level frame (/-frame) Figure 2.6: The body frame (fo-frame). 

2.2.3 Local level frame (/-frame) 
Local level frame is a local geodetic frame and its origin coincides with the 

inertial sensors frame. With the local level ENU (East, North and UP) frame, the X, Y 

and Z axes of the inertial sensor are aligned with geodetic East, North and vertical up 

direction respectively. The ENU frame is used as the frame of reference in this thesis 

while converting the accelerometer and gyro measurements into position, velocity and 

attitude information. In the same way, the GPS "navigational solution" refers to position 

and velocity information in this frame. Figure 2.5 and figure 2.14 (reproduced from 

[11]) illustrate the ENU frame or the local level frame. 

2.2.4 Body frame (b-frame) 
It is an orthogonal axis set and is made coincident with the axes of the vehicle's 

moving platform in which the sensors are mounted. As shown in figure 2.6 (reproduced 

from [11]), the y axis is defined in the forward direction, the z axis is defined pointing to 

the vertical up direction of the vehicle and the x axis completes the right-handed 

orthogonal co-ordinate system. 

2.3 Earth Models 

In this section, approximations to the Earth's shape and gravity models tailored 

(simple and suitable) for land vehicle navigation amenable to simple mathematical 

descriptions are presented. An accurate model of the Earth's shape is necessary so that 
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an accurate solution (position, velocity and attitude) of a moving vehicle can be resulted 

from its inertial mechanization process. The Earth's gravity model is used to determine 

what part of the sensed acceleration by the inertial sensors is due to vehicle dynamics 

and what is due to the Earth's gravitational attraction [12] [14]. 

2.3.1 Ellipsoid Geometry 

Owing to the slight flattening of the earth at the poles, it is customary to model 

the earth as a reference ellipsoid instead of considering the typical perfect sphere model. 

It approximates more closely to the true geometry than the spherical model as shown in 

figure 2.7 (modified and reproduced from [13] [14]) and 2.8 (modified and reproduced 

from[10][ll][12]). 

<f+q> 

Figure 2.7: Illustration of eccentric (r), geocentric (0') and geodetic latitude (cp). 

Here, N is the prime vertical radius of the best fitting Earth ellipsoid (East-West) 

and M is the corresponding meridian radius of curvature (North-South). They are also 

known as meridian radius and denoted as N in figure 2.7 and 2.8 and transverse radius of 

curvature respectively. They are expressed as [10] [11][14]: 

a 
N = 

( l - e 2 s i n > ) l / 2 

M = 
a(\-e2) 

(\-e2 sin2 tp) 3/2 

(2.2) 

(2.3) 
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Where, Length of the semi major axis, a = 6378137 m 
Length of the semi minor axis, b = a(\- f) = 6356752.3142 m 
Fattening of the ellipsoid, f = (a-b)/a = -0.0033528 

Eccentricity of the ellipsoid, e = [f(2-f)]U2 =[(a2 -b2)la2f2 =0.0818 

T Uneven surface 
->of the Earth (not 

to the scale) 
The height 

h' on the 
surface of 

the 
reference 

llipsoid 

Figure 2.8: Local Meridian plane of reference ellipsoid. 

2.3.2 Ellipsoid Gravity 

Magnitude and the direction of the gravity vector vary with position on the 

Earth's surface and height above it. Inhomogeneous mass distribution of the Earth is a 

factor for this variation [11]. Precise knowledge of the gravity vector is important for 

certain high accuracy applications such as for marine navigation. Gravity deviations are 

represented by the following gravity vector referenced in the local level frame (ENU 

frame) [12]: g = [- £g 7jg - g f 

Where, C, = meridian deflection of the vertical (+ve about east), rj = normal 

deflection of the vertical (+ve about north) and g = gravity magnitude (+ve about up). As 

height deflection is not usually a major issue unless driving on a mountainous trajectory, 

in automobile navigation, the gravity vector is approximated: g = [0 0 - gj 
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Here, g is computed from the following equation where Coo, CJO, C20, Coi, Cu, 

C2/and C02 are constant values listed in table 2.1 [13]: 

g = (C00 + C10 sin2 T + C20 sin4 r) + (C01 + Cn sin2 T + C21 sin4 T)/I + CQ2h
2 (2.4) 

Table 2.1: Constant coefficient (unit in m/sec ) for normal gravity. 
Coo 
CJO 

C20 

Coi 

c„ 
C21 

C02 

9.780326582929618 
5.197841463945455 x 1 0 2 

-1.18852395328380* 10"4 

-9.411353888873278* 10'7 

.347079301177616><10'9 

-3.034117526395185 XlO"12 

6.685260859851881X10 l4 

Here, the eccentric latitude (T) is defined by the following equation: 

T = tan~][(b/a)tmq)] (2.5) 

2.4 Attitude Representations 

Various mathematical representations are used to define the attitude of a body 

with respect to a co-ordinate reference frame. The parameters associated with each 

method are updated as the vehicle rotates using turn/rotation measurements provided by 

the gyro [11]. The attitude representations discussed in this section are used to derive 3D 

INS mechanization equations. The three attitude representations are the following. 

2.4.1 Direction Cosine Matrix 
The direction cosine matrix (DCM) is a 3 by 3 matrix, the columns of which 

represent unit vectors in body axes projected along the reference axes. It is denoted by 

the symbol R[. It can be written here in component form as follows: 

K = 
rn 
rn 

/ 3 1 

rn 

22 

r32 

13 

r23 

r 3 3 . 

The columns represent unit vectors in body axes projected along the reference 

axes. The element in the z'th row and the 7th column represents the cosine of the angle 

between the f-axis of the reference frame and they'-axis of the body frame [11]. 
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* . = 

R2 = 

2.4.2 Euler Angles 

A transformation from one co-ordinate frame to another can be carried out as 

three successive rotations about different axes taken in turn [11] [12]. For instance, a 

transformation from reference axes to a new co-ordinate frame may be expressed as 

follows where y/, 6 and 0 are referred to as the Euler rotation angles. 

Rotation through angle y/ about reference z-axis can be expressed by as [11] [12]: 

cos^ siny 0 

- s i n ^ cosy/" 0 

0 0 1_ 

Rotation through angle 9 about new _y-axis after the first rotation as the y axis has 

been transformed to a new position. It can be expressed as [11] [12]: 

cos 9 0 - sin 9 

0 1 0 

sin 6 0 cos 6 

Rotation through angle </> about new x-axis (after the first and second rotation 

mentioned above, this axis has been transformed). It can be expressed as [11] [12]: 

1 0 0 

0 cos (/> sin <j> 

0 - sin (/> cos <j) 

2.4.3 Quaternion 

The quaternion attitude representation allows a transformation from one co­

ordinate frame to another to be effected by a single rotation (about a vector ju defined in 

the reference frame). Theoretically, quaternion is a four-element vector representation, 

the elements of which are functions of the orientation of this vector and the magnitude of 

the rotation [11]: 

g,l f(jix//i)sm(ji/2y 

q2 = (//>,///)sin(///2) 

q3 (//. ///)sin(///2) 

q4 cos(///2) 

* 3 = 

Q = 
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Here, Q is the vector of Quaternion parameters. jux, juy and JU- are the components 

of the angle vectors and /u is the magnitude of ju . The rotation angle ju = Jfi* +ju2
y + fl2_ 

2.4.4 Relationships between DCM, Euler Angles and Quaternion 

To solve INS attitude mechanization equations, quaternion is used over the 

parameterization of the rotation matrix R[ due to computational simplicity. Four 

differential equations are solved numerically instead of six differential equations if the 

rotation matrix R[ is manipulated directly. It also avoids the singularity problem 

introduced with some other solutions methods (with DCM and/or Euler angles methods). 

Quaternion parameters can be expressed using the DCM elements in the following way 

[10] [11]: 

0.25(Rn-R2,)/q4 

(2.6) 

0.5^1+ A, 1+^22+^33 

In the reverse way, DCM can be formed using the Quaternion parameters 

[10][11][12]: 

q2 

.44. 

0.25(Ru-R3i)/q4 

0.25(R2i-Rn)/q4 

RL 

r\i 

r22 

r32 

-, 
r i3 

r23 

^33 _ 

= 

q^-ql-ll+ql ^q^-q^) ^(q1q3+q2qA) 
= 2(tf, tf2+03£4) -ql+ql-ql+ql 2(q2q,-qiq4) (2.7) 

2(qlq3-q2q4) 2{q2q3+q{q4) -q\ -q\+q\ +q]_ 

A transformation from reference to body axes may be expressed as the product of 

three separate transformations: Rf = R3R2Ri 

In the same way, the inverse transformation from body to reference axes is given 

by[U][12]:R'b=R?r=RfR2
TRl 

K = 

K = 

1 ^ 2 ^ 3 

cos# 

0 
- s i n # 

0 

1 

0 

sin# 

0 

cos# 

"1 

0 

0 

0 

COS0 

sin^ 

0 

- s i n 

cos< 

cos yr - sin yr 0 

sin y/ cos y/ 0 

0 0 1 

cos#cos^ - c o s ^ s i n ^ + sin^sin^cos^ sin0sin^ + cos^sin#cos^ 

costfsin^ cos^cos^ + sin^sintfsiny - s i n ^ c o s ^ + cos^sin^sin^ 

- sin 9 sin <f) cos 9 cos <p cos 9 

(2.8) 
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As gyro sensors provide data at a higher sampling rate and in that way any 

attitude increment remains always small, it can be assumed that sin^ —*</>, sin#—>#, 

siny/—)-y/ and cos ̂ —»•/, cos#—>7and cosy/—*l. Making these substitutions in the above 

equation and ignoring products of angles which also become small, the DCM expressed 

in terms of the Euler rotations reduces approximately to the skew symmetric form 

[H][12]: 

1 -y/ 6~ 

V 1 -*> (2-9) 
- 9 <j> 1 

The Euler angles may be derived directly from the DCM elements [11]: 

K = 

'32 

'33 

(j> — arctan 

# = arctan [— r31] 

y/ = arctan 

(2.10) 

(2.11) 

(2.12) 

2.5 Inertial Navigation System 

By measuring the accelerations and rotations applied to the inertial frame of 

vehicle (and using initial position, velocity and attitude), an Inertial Navigation System 

(INS) provides its position, velocity and altitude. Inertial Measurement Unit (IMU) 

refers to the equipment containing an orthogonal triad of accelerometer and gyro 

sensors. IMU is a part of INS and it detects the current acceleration and rate of change in 

attitude (i.e. pitch, roll and yaw rates). 

The output of an accelerometer due to a gravitational field is the negative of the 

field acceleration. In vector notation, it is given a s : / = 5 - f . Here, / = specific force 

measured by accelerometer, a = acceleration with respect to the inertial frame and g — 

gravitational acceleration. Then the navigation computing unit (NCU) which is the other 

part of the overall INS instrument processes them using mechanization equations to find 

the total change from the initial position. In contrast to the absolute positioning system 
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like GPS, INS is a relative positioning system. INS derives its position and altitude from 

integrating inertial referenced accelerations and angular velocities [4]. 

2.5.1 Grades of IMU 

IMU sensors are of different grades based on the type of technology used to 

build them and accordingly are of different cost. The higher the cost the better is the 

sensor output. According to the performance quality and cost, they are usually labeled in 

three different grades. They are strategic, navigation and tactical grades. The emergence 

of inertial sensors made of micro-electro-mechanical systems (MEMS) in the past 

decade has caused MEMS grade sensors to be widely used as well. Strategic grade IMUs 

are very expensive and cost more than US $250,000. They provide highly accurate 

navigational solution. Navigational grade IMUs are less accurate and cost in the range of 

$70,000 to $100,000 USD. Tactical grade IMUs are even less accurate and less 

expensive. MEMS-grade units are very small and inexpensive. The price is in the order 

of US $500 to $2000 and while produced in mass quantity, the unit price can go below 

$10. Due to inherent sensor noise, their solution tends to degrade rapidly (in the long 

run) [4]. 

Micro-Electro-Mechanical Systems (MEMS) technology has shown promise for 

the development of low cost IMUs. Advances in MEMS and computer technology 

combined with the miniaturization of electronics have made it possible to produce chip-

based inertial sensors. They are inexpensive, small and consume low power. A recent 

development of a complete MEMS IMU/GPS integrated navigation system by the 

Mobile Multi-Sensor System (MMSS) Research Group at the University of Calgary had 

price range of US $100-200 [15]. Thus, if a low-cost navigation solution comprising 

integrated IMU and GPS sensors is produced in a very mass scale, the gyro and 

accelerometer sensors price should be as low as below US $10.00 [\6]. 

2.5.2 Types of Inertial Navigation Systems 

There are two distinct arrangements of accelerometer and gyro sensors and. they 

are. Gimbaled mechanized and Strapdown. In gimbaled mechanized arrangement, IMU 

sensors are commanded to maintain the platform frame alignment with a specific 
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navigation coordinate system. In this way, in spite of vehicle motion, the platform does 

not experience any rotation relative to the navigation frame. Thus, accelerometers 

aligned with the platform measure the specific force along the navigation frame axes. 

After proper scaling and direct mathematical integration, this measured acceleration 

yields the desired position and velocity vectors. Vehicle attitude is determined by 

measurement of the relative angles between the vehicle and the platform. 

Strapdown Inertial Navigation System (SINS) is a self-contained positioning and 

attitude device that continuously measures (sampling rate higher than 50 Hz) three 

orthogonal accelerations and three angular rates. Using these measurements, it calculates 

the incremental position, velocities and attitude angles provided that initial position, 

velocities and attitude were known. In this way, it keeps track of the vehicle's attitude, 

more importantly the heading or azimuth angle of automobile vehicle with respect to a 

reference frame. Currently almost all INS are of SINS due to their advantages in 

reliability, higher output rate, low power consumption, light weight, low cost and 

flexibility (mechanically less complex). In SINS, the sensors experience the full 

dynamic motion specifically higher rotation rates of the vehicle and produce data with 

higher range of bandwidth. Due to this increased dynamic range, it contains more noise 

which causes gyro scale-factor error and nonlinearity [10]. 

2.6 IMU Sensor Errors 

The accuracy of INS is significantly affected by the error characteristics of the 

IMU sensors. The nature of the sensor errors can be categorized into two parts. They are 

Deterministic and Stochastic Error. 

Bias offset and Scale factor of accelerometer and gyroscope sensor are 

deterministic errors. Bias refers to the offset in the measurement provided by an inertial 

sensor. By definition, the bias of a signal is the signal it gives when there is no input. 

The deterministic part of bias is called bias offset and can be determined by calibration. 

The stochastic part of it is called bias drift as it is random in nature and it varies with 

different factors like time, temperature etc. [4]. 
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The scale-factor of an inertial sensor is the relationship between the output signal 

and the quantity being measured. For example, a gyro provides a measurement of turn 

rate about a given axis. The output of the gyro may take the form of a voltage or current 

(an analog output) proportional to the applied turn rate plus a constant bias term caused 

by the various imperfections within the sector. To convert it to a meaningful quantity 

and unit, IMU calibration is used. Deviation from theoretical (measured by IMU 

calibration) scale factor with temperature and repeatability causes scale factor instability. 

Like bias drift, scale factors can be of random nature and can be modeled stochastically. 

Unknown random (non constant) variations in bias and scale factor also significantly 

contribute to inaccurate navigational solutions [4]. 

The IMU sensors in an INS have significantly complex short-term (high-

frequency) and long-term (low frequency) noise characteristics and they are contributed 

by many different error sources. IMU sensor noise is a kind of common stochastic error 

resulting from the sensor itself and/or other electronic equipment that interfere with the 

measured output signals. Some kinds of noise are generally distributed across the 

frequency spectrum and others are frequency centered. Unknown zero-mean additive 

noise on the sensor outputs, quantization noise, computational noise (from 

mechanization) and electronic noise are also major factors and these noises are usually 

unpredictable. But its statistical properties are used in KF to estimate drifting scale 

factor and biases. Axes misalignment is another kind of stochastic error resulting from 

the imperfection of mounting the sensors [4]. EVIU Calibration is discussed in the next 

section to counter the deterministic errors. IMU alignment is then presented as both of 

these procedures are crucial before inertial navigation starts. 

2.6.1 IMU Calibration 

Accelerometer sensor calibration provides the relationship between the sensed 

specific force and the actual specific force. In the same way, gyro sensor calibration 

relates the sensed rate of rotation and the actual rate of rotation. The reference 

acceleration is the magnitude of the local apparent gravity vector at the calibration site. 

And the reference angular is the Earth's rotation rate. Thus accelerometer and gyro 
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calibrations are performed at a location where the gravity vector magnitude and geodetic 

position have been determined with great precision. At various orientations of the 

sensors, the outputs of the accelerometers and gyros are compared to reference values 

and during navigation these differences are used to generate corrections to the measured 

specific force and angular rate respectively [4] [14]. 

Table 2.2: Using six-position calibration technique, calculation of deterministic bias and scale factor (of 
accelerometer and gyro sensors). 

Accelero-
meter 

Gyro 

Measurement for up 
position 

up 

b-(l + s)g 

ba + Q+ SJa>e sin p 

Measurement for down 
position 

dawn 

b + (l + s)g 

dawn 

Calculated 
Bias 

z +z 
up down 

2 

2 

Calculated Scale 
Factor 

2g 

aip-tyovM-mnW 
2cqsm<p 

Deterministic bias drift and scale factor calculation for IMU sensors can be 

achieved by different calibration techniques namely local level frame calibration, six 

position static test and angle rate tests. In six position static test, the sensors are mounted 

on a level table with each sensitive axis pointing alternately up and down directions in a 

static mode. Measurements are taken for 10-15 minutes and they are averaged. 

Deterministic bias and scale factor are calculated by summing up and differencing 

combinations of the averaged measurements [4]. Table 2.2 contains the required 

mathematical notions where b, S, bm, Sm, (p, coe and g represent accelerometer bias, 

accelerometer scale factor, gyro bias, gyro scale factor, latitude of the calibration 

location, Earth's rotation rate (coe = 2#/24 rad/hr ~ 15°/hr) and gravity, respectively. 

2.6.2 IMU Alignment 
The SINS body frame can take any arbitrary direction as the accelerometer and 

gyro sensors are strapped down to the vehicle which can be oriented in any direction 

with respect to the navigation frame. The principle of strap down inertial navigation 

(SINS) assumes that initial information about the system is already known. While the 

starting position and velocity can be obtained using GPS assistance, the initial 

orientation of the system is not typically available. Therefore, the INS requires 



24 

performing an initial alignment which produces coincidence between the sensor axes of 

the IMU with the local level frame (shown in figure 2.5 and figure 2.14). The purpose of 

this alignment is to establish the relationship between the body frame and the local level 

frame. Thus the initial parameters of the rotation matrix (R!
h) between the body frame to 

the local-level frame are calculated. Once the alignment is done, the rotation rates 

measured by the gyros are used to constantly update the R'h matrix. This updated matrix 

is then used to transform the accelerometer measurements to the navigation frame [4]. 

Initial alignment is done in two steps, namely accelerometer leveling and gyro 

compassing. Accelerometer leveling aligns the z-axis of the accelerometer triad to the z-

axis of the local frame by driving the horizontal accelerometer outputs to the value zero. 

After accelerometer leveling, gyro compassing is performed based on the principle of 

sensing a component of the Earth rotation by gyro sensors. This component (coecos(p) is 

at its maximum when the sensitive axis points North and zero when it points East [4]. 

Accurate alignment is necessary to achieve satisfactory navigation solution as it can 

severely influence the performance of an inertial navigation [11]. 

2.7 2D INS Mechanization Equations 

The idea of mechanization is to determine velocity and position in a desired co­

ordinate system. The sequence of equations used to convert the IMU outputs of angular 

rates and accelerations to ENS outputs of positions, velocities and attitudes are called 

Mechanization Equations. They include a set of first order differential equations that 

transform the raw IMU measurements into position, velocity and attitude components 

[10]. The computational processes required to perform the navigation task in 2D are 

much simplified compared with a full strap down system in a 3D space. In other words, 

being functionally identical, 2D Mechanization presents a foreword for the much 

complex 3D Mechanization equations [11]. 

A vehicle constrained to move in a single plane can use an inertial navigation 

system to find its navigational solution. In this case, the system contains two 

accelerometers and a single axis rate gyro attached rigidly to the body of the vehicle. 
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The azimuth angle (A) is obtained from mathematically integrating the gyro angular 

velocity. The initial azimuth angle A0 is required for this. 

A{t)=\o)Hymdt + A0 (2.13) 

North 

Figure 2.9: Rotation of body frame by about the vertical axis. 

Measurements taken by the sensors are in the body frame as the sensors are 

mounted in this frame. These measurements are transformed to the navigation frame: 

/
•navination ryn rbodx 

~KbJ 
Here, jnavisa"on j s m e acceleration in the navigation frame (which is the local level 

frame). In a 2D scenario, the local level frame constitutes only East and North direction. 

j y is the acceleration in the sensor's body frame and Rl is the rotation matrix which 

transforms body frame parameters to navigation frame. In detailed equation form: 

/ £ = / y s i n A + / rcosA 

/ w = / , c o s A - / J s i n A 

In matrix form: 
cos A sin A 

- sin A cos A A. 
(2.14) 

Here, as illustrated in figure 2.9 (reproduced from [4][12]) and shown in 

equation (2.14), fx and fy are the accelerometer measurements along the x and y 

directions of the body frame, /E and /N are the corresponding East and North 

accelerations in the local level frame and A is the azimuth angle. By mathematically 

integrating, the incremental values of position and velocity can be calculated. 

V(t) = V(t0)+$f(t)dt 
o 
i 

P{t) = P(t,)+\v{t)dt 

(2.15) 

(2.16). 
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Figure 2.10: Block diagram illustrating 2D INS Mechanization. 

Figure 2.10 (modified and reproduced from the [4]) summarize the mathematical 

equations involved in 2D Mechanization procedure. 

2.8 3D INS Mechanization Equations 

The previous section has outlined the basic form of the computing tasks to be 

implemented in a strap down system using a simplified 2D representation. In contrast, 

attitude information in 3D Mechanization cannot be obtained by a simple integration of 

the measured angular rates. In this scenario, the three gyro outputs contain not just only 

actual angular velocities of the moving body, but also both the Earth's rotation and the 

change in orientation of the local-level frame. The measured angular velocities by gyro 

can be decomposed as (in the skew-symmetric matrix equation form representation): 

n*B = n*„+n£=n*-Q» (2.n) 

7eA 
0Je 

V North 
(iJJ>CPS(p 

/ „ E a s t 
/ ,'ujesin(p 

Figure 2.11: : De-composition of the Earth's 
rotation in local level frame Figure 2.12: Change of local North and Vertical directions 

during motion over the surface. 
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Qffcis the skew-symmetric matrix of the measurements of angular velocities 

provided by gyroscopes and it can be calculated directly from gyro outputs: 

O). G), 
(2.18) 

0 -

co. 0 -6)x 

-<°y °>x ° 
Since, fflf=/?X and atel = R* alel, then attt = atu + attl = R*(aile + (del). In 

elaborate form, it can be written as follows and in that way £lh
u can be calculated: 

r „„ V 

4=*! 
f 0 A 

coe cos cp 

v ^ s i n ^ 
+ 

•V 

M+h 
Ve 

N + h 
Vg tan^ 

N + h 

(2.19) 

Here, Q'ie and Q.'el are the skew-symmetric matrices corresponding to the angular 

velocities tf^and ^respectively. The angular velocities tf^and cddare illustrated in the 

figure 2.11 and figure 2.12 (reproduced from [11]) can be expressed mathematically as: 

0}\e = [0 0)e cos (p 0)e sin (p\ (2.20) 

4 = •V" V tan <p 
(2.21) 

M + h N + h N + h 
The mechanization process can be separated into three parts: 

2.8.1 Attitude Mechanization 

The initial attitude angles obtained (usually from the alignment procedure): pitch 

(6), roll {</>) and azimuth (y/) angles form the rotation matrix R'h. By solving the time 

derivative equation of the transformation matrix, the incremental attitude angles of the 

moving body is determined: 

^=J?X=^(«*-«S) (2-22) 
To solve the above differential form, quaternion parameters for the initial time 

step (Qk at time fy) are calculated from the initial DCM Rl
h. Then, the quaternion 
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parameters for the next time step (Qk+i at time tk+i) based on the values of the quaternion 

parameters <2A at time tu are determined: Qk+1 - Qk + — ̂ (fyjgi At 

Once the quaternion parameters are determined for the next time step (Qk+i at 

time tk+i), the rotation matrix (in the DCM form) R'b can be obtained using the DCM 

expressed in quaternion parameters relation. The updated rotation matrix R[ is then used 

in transforming the more recent (newly sampled) accelerometer measurements to the 

navigation (or in the local level frame) frame. Using trigonometric relations between the 

Euler angles and the DCM, pitch {&), roll (</>) and azimuth (y/) angles can also be 

obtained [4]. 

2.8.2 Velocity Mechanization 
The velocity is expressed by three components along the East (V*), North (V") 

and vertical (V") directions, V1 =[Ve Vn Vf. 

North 

Figure 2.13: Coriolis acceleration on rotating 
Earth. 

Figure 2.14: Local level ENU frame. 

The acceleration of the moving platform is measured by the accelerometers in 

three mutually orthogonal directions in body frame/'' =[fx f fzY- Velocity 

components cannot only be deduced integrating directly from acceleration components 

in the local-level frame of the moving component. To transform these measurements 

into the local level frame, the updated rotation matrix (R'h) calculated in the previous 

section (2.7.1. Attitude Mechanization) is used as follows: 
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/'=[/„ /, fJ=Kfh=Klf> fy fj (2-23) 
The R'hf

h term transforms the acceleration measurements from the body frame 

to the local level frame. In addition to the sensed acceleration of the moving body and 

the Earth's gravitational acceleration, the accelerometer measurements include for the 

apparent acceleration sensed by the vehicle as it moves within a rotating coordinate 

frame. This apparent acceleration is caused by the Earth's angular rotation rate 

(illustrated in figure 2.11) and the change in orientation of the local-level frame 

(illustrated in figure 2.12). As previously discussed, the skew-symmetric matrix Q.'je and 

Q!
el accounts for the effect of the Earth's rotation coe at the vehicle's position and the 

change in orientation of the local level with respect to the Earth respectively. It is also 

referred to as Coriolis acceleration. The Coriolis acceleration effect on a moving point 

on a rotating platform is illustrated in two dimensions in figure 2.13 (modified from 

[11]). As the point moves away from the axis of rotation, it traces out a curve in space as 

a result of the rotation. The dotted line in figure 2.13 is the trajectory required to travel 

from O to R on a rotating earth. 

Taking the abovementioned three factors (sensed, apparent and gravitational 

acceleration) into consideration, the accelerometer output vector relation / -a-g can 

be transformed from the inertial frame to the local level frame (in this case the ENU 

frame) as the first order differential equation as (for details see reference [11]): 

V'=RlJb-(2Q!ie+Q!el)V' + g' (2.24) 

2.8.3 Position Mechanization 
In the local level frame, the position of a platform is expressed in terms of the 

curvilinear coordinates i.e. latitude, longitude and altitude: r' - \<p A h]T . 

In figure 2.15 (reproduced and modified from [11]), latitude calculations have 

been illustrated on a meridian plane, an imaginary great circle on the earth's surface 

passing through the North and South geographic poles. The change of latitude is 

expressed as: 
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<P 
V" 

M+h (2.25) 

In the same figure, the longitude calculations have been illustrated on a parallel 

plane (the Earth has been sliced parallel to the equatorial plane which perpendicularly 

intersects the axis of rotation) of the Earth. The change of latitude is expressed as: 

V (2-26) 
A = -

(N + h)cos(p 

Meridian plane Parallel plane: ̂ zoomed 
. . . • from Meridian plane 

•The height 'h' on the 
surface of the 

reference ellipsoid 
(zoomed) 

Arc V xA? 
Radius (N + h) cos<p 

AX = Change of longitude on 
Parallel plane 

Radius M + h 
M = Change of latitude on Meridian plane 

Figure 2.15: Illustration of the change of latitude on the parallel plane and change of longitude 
on meridian plane. 

Here, (p, k and h are the geodetic latitude, longitude and altitude. The figure 2.7 

clarifies the difference between geocentric latitude and geodetic latitude. Geodetic 

latitude (q>) at a point on the surface of the Earth is the angle between the equatorial 

plane and a line passing through centre of Earth and the surface location point. In 

contrast, geodetic latitude at a point on the surface of the Earth is the angle between the 

equatorial plane and a line normal to the reference ellipsoid which passes through the 

point [11]. 

The calculation of the change of position of a moving body is performed based 

on the velocities in each direction. Once the velocities are known, the position can be 
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calculated accordingly. In matrix form the equation is expressed as the following, where 

D"1 is a 3 by 3 matrix whose non zero elements are functions of latitude (jp), height (h) 

and the Earth's radiuses (N and M): 

> " 
A 
h 

— 

1 

(N + h)cos <p 

0 

0 

0 

1 
M +h 

0 

0 

0 

1 

V" 
v 
yu 

= D"V (2.27) 

Finally, the 3D Mechanization equations in local level frame that represent the 

change in position, the change in velocity and the change in attitude can be summarized 

in the figure 2.16 (modified and reproduced [5]) following matrix form equation [4]: 

r' 

K 

D"V 
R'jh - (2QL+a[l)v'+g

l (2.28) 

3 accelerations 

fb = V, fy fz] 
I / Gravity • 

Correction1 
previous position 

Unit Convers ion ! . ^V ' = R'j"-(2D.'[e +Q'el)V'+g 
and Velocity Mechanization 

Bias and Scale 
[ Factor Correctionr • • R,

h =
 J1'"^'' 
Update 

; Transformation Matrix ,-* 

R^RKQJ;,,-^;,) 

3 angular rates 
01,/= [wx (j)y cuj 

<p: 
V" 

• ; * • • 

V" 
M+h (N + h)cos(p 

. Position Mechanizatipn 

;h=V" 
Position 

Velocity 

Rl Attitude 
^Computat ion 

Attitude 
e , </>, \\i 

previous position and velocity 

Figure 2.16: Block diagram of the procedures of 3D Mechanization. 

The input to these mechanization equations are the accelerometer and gyro 

measurements (expressed as f and 0!]h in the above equation). Thus the navigational 

function is fulfilled by combining the measurements of vehicle rotation and specific 

force (acceleration) with knowledge of the gravitational field to compute estimates of 

attitude, velocity and position with respect to a pre-defined reference frame [11]. 

2.9 INS Error Equations 

The navigational solution of the ENS tends to deteriorate in the long term mostly 

due to the mathematical integration involved in the INS mechanization procedure 
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presented in the previous section. To improve this situation, a dynamic error model is 

used that includes position coordinate, velocity component and attitude component 

errors (resulting form the INS mechanization procedure) and stochastic error models of 

IMU sensors (for analysis and estimation of different unaccounted error sources). These 

errors are variable in time and can be modeled by differential equations. 

The mechanization equations discussed in the previous section provide no 

information about the errors of the system as they process data received from the IMU to 

obtain updated navigation parameters. To estimate the system errors in order to improve 

performance to a satisfactory level, the system (shown in equation 2.24) is perturbed. 

The linearization approach of differential error equations used in this section is 

the perturbation representation for position, velocity and attitude errors to obtain 

dynamic error equations [12]. In addition, stochastic modeled bias drift of IMU sensors 

is a vital part of the dynamic error model. The first order Gauss-Markov is the most 

commonly used stochastic error model due to its simplicity. Thus, the dynamic error 

state vector for any INS system can be expressed as: 

x = [8f 8A 8h dr 8y„ Sv„ 8e 8, 8W SWx 8W> ^ 8,. 8,. 8j (2.29) 

Here, the prefix d implies the variable is an error value. 

dq,, 8x and e)/, are coordinate errors. 

8V,, 8y„ and 6 are velocity errors. 

So, 8$ and S¥ are attitude errors. 

Sfx, Sfy and dfz are accelerometer measurement errors. 

dcox, da>y and dcoz are gyro measurement errors. 

Using a Taylor series expansion to a 1st order approximation, neglecting the 

higher order terms and simplifying several factors so that only the most significant error 

components were included, the time derivative of the errors can be obtained. The error 

equations are expressed as follows. 
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2.9.1 Coordinate errors 

The rate of change of position components is defined as: (8r') = 

fl -r' = ' 8r'. Applying Taylor series expansion linearization on position 
dr 

mechanization equation and afterwards neglecting higher order terms (i.e. the terms 

which involve dividing the velocity components by the large Earth radius value), 

coordinate errors can be expressed as [4]: 

1 u u 
' 8V' 

SVl 

SV" 

Sr' 
Sep 

SX 

Sh 

(N + h)cos <p 

0 

0 

0 

1 
M +h 

0 1 

(2.30) 

2.9.2 Velocity errors 
By applying the linearization and the first order approximation criterion on the 

velocity mechanization equation (equation 2.24), the velocity error becomes: 

8V1 =8R'jh + R>h8fh -(I^ + Q.'JSV1 -(2Xl'ie + &l'el)V' + 8g' (2.31) 
Neglecting higher order terms (i.e. 1st order approximations), velocity errors can 

be expressed as: 

<^' = "/« ° fe W +K 9y (2-32) 

. /. -/, o \[sw\ l$z_ 
2.9.3 Attitude errors 

Ignoring the insignificant error terms (terms involving velocity components 

divided by the Earth radius and the Earth rotation rate components), the attitude error 

term becomes [4]: 
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Sy/ 
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N + h 
-tan<p 
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1 
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(2.33) 
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2.9.4 Accelerometer bias errors 

After removing the deterministic bias and scale factor of the IMU sensors 

(accelerometers and gyros), the residual part is modeled stochastically as a first order 

Gauss Markov process. The accelerometer random errors are usually correlated in time 

and expressed as follows [4]: 

<f = 
& 

= 0 
0 

0 
-ay 

0 

0 " 
0 

-a. 
+ 

J 2a a1 

V x ax 

J 2a <72 

\ y ay 
J 2a.at 

w{t) (2.34) 

Here, ax, ay and az are the reciprocals of the time correlation parameters of the 

random processes respectively associated with the acceleration measurements/*,/^ and 

fz. On the other hand, aax, aay and aaz are the standard deviations of these processes 

associated with the gyro measurements. w(t) is the unity variance Gaussian noise. 

2.9.5 Gyroscope's drift errors 
The gyroscope random errors are usually correlated in time and modeled as a 

first order Gauss Markov processes as follows [4]: 

Scbh = 

86)x 

da)v 
> 

Sco, 

• A o 
0 -A 
o o 

0 
0 
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~&ox~ 

8(0y 

8a>: 

+ 

^^A< 
Mt) (2.35) 

Here, (}x, fiy and pz are the reciprocals of the time correlation parameters of the 

random processes respectively associated with the gyro measurements cox, coy and coz. On 

the other hand, agx, agy and ogz are the standard deviations of these processes associated 

with the gyro measurements. And, wit) is a unity variance Gaussian noise. 

2.10 GPS/INS data fusion using KF 

The 2D or 3D Mechanization solution using low-cost IMU sensor data is not 

useful in the long run (during a GPS outage) since sensor errors and the fixed-step 

integration errors in mechanization computation (resulted mostly from mathematical 

integration process) cause the solution to diverge. The most common algorithm used to 

integrate or fuse GPS and INS is KF that by accounting for these errors improves the 
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navigation solution. It operates with a set of mathematical equations and recursively 

processes the noisy measurements to compute estimates. 

2.10.1 KF based GPS/INS Integration Schemes 

KF can be implemented in different ways such as loosely, tightly and ultra-

tightly coupled integration and can be implemented either in a closed loop or open loop 

framework [4]. In tightly coupled and ultra tightly coupled scenario GPS clock timing, 

pseudoranges, phase rate (Doppler) or carrier phase measurements are blended with the 

navigation solution generated by the M U sensors [10]. Furthermore, tight integration 

provides a means for implementing a more sensitive fault detection and isolation. 

Navigational applications which use carrier-phase output for attitude determination and 

carrier-phase positioning benefit from tightly coupled integration [5]. 

i" IMU Sensors 
(accelerometers and I 
gyro sensors): 

\t = V* fy Q 
Wb = [U)X U)y wj 

Bias and '; 
Scale 
Factor j-

Correction,: 

Correction feedback (15 state error vectpr) 

INS 
Mechanization: 

GPS receiver jlnternal KF 
GPS receiver 

3 positions and 

:' Kalman • ^fACorrected Output: 
• Filter : ^—^3 positions, 3 

velocities and 3 
attitude angles 

3 velocities 
Figure 2.17: Decentralized and closed loop GPS aided SINS KF architecture. 

In contrast, in a loosely coupled system, the GPS/INS integration KF uses GPS-

derived position and velocity (the modified output of a GPS receiver) as a measurement 

instead of GPS-derived pseudo-range, phase and phase-rate. Loosely coupled integration 

treats GPS and INS as individual navigation systems, combining the two at the 

navigation solution level (3 positions and 3 velocities). The loosely-coupled filtering 

approach has been chosen in this thesis (for automobile navigational application) due to 

its modularity, smaller filter size, flexibility and simplicity [5]. For a loosely coupled 

system there are two separate and independently operating KFs, one for GPS (internal, 

as it comes with a GPS receiver) and the other for INS as shown in figure 2.17 (adapted 

from [17]). It is also referred to as "GPS aided INS" because it treats the outputs of the 

internal GPS KF as independent measurements. 



36 

Open loop KF approach does not account for the estimation of sensor errors. In 

contrast, in closed loop KF, IMU sensor errors are stochastically modeled (as mentioned 

in the previous section) and are fed back to correct the measurements, (as shown in 

figure 2.17) for the corresponding errors before being computed and fetched for the next 

epoch's/sampling interval's computation [17]. Open loop KF approach is used for high 

end expensive IMU sensors with low sampling rate. 

2.10.2 KF Models for GPS/INS Integration 
KF is used for optimally estimating the error state of the GPS/INS system for 

which the measurements are corrupted by variable noise. It uses a variable known as 

Estimated State Vector (x) that can contain three position errors, three velocity errors, 

three attitude errors and augmented by accelerometer and gyro sensors errors. Thus, a 

dynamic model with 15 error states of INS is applied for this kind of KF based 

integration in this thesis [18]. As shown in the previous section ("2.9. INS Error 

Equations") of this thesis, the error state vector x for navigational parameters is 

expressed as: 

* = [*, *x Sh 8yr Sv„ Sv„ 8e 8, 8V ^ ^ 80z 8, 8f. 8ff ^ 

Another important variable used in KF is called Error Covariance Matrix (P). It 

is a measure of estimation uncertainty which take into consideration how the sensor 

noise and dynamic uncertainty contribute to the uncertainty of the estimated system 

state. By maintaining an estimate of its position, velocity and attitude output estimation 

uncertainty and the relative uncertainty in the sensor outputs, the KF is able to optimize 

the estimate to minimize the estimation error. It combines the estimate with the 

measurement using a variable called Kalman Gain (Kk) [17]. KF is essentially a set of 

mathematical equations which has a prediction stage and an update stage [19]. 

a) The Prediction Stage 

The Estimated State Vector x (shown in equation 2.33) and its covariance 

matrix of estimation uncertainty P propagate from one time step to the next in this stage 

[17]. 

A linear model in discrete time can be shown as: 
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Prediction of error states: xk = Fk t_1xA:_1 (2.37) 

Prediction of error covariance: P~ = Fkk_)Pk_lFk
T

Ji_l + Gk_}Qk_iGl_i (2.38) 

Here, Fk,k-\ is the state transition matrix, it relates the state from the previous step 

(denoted by subscript k-\) with present step (denoted by subscript k). 

Qu-\ is the system noise covariance matrix given by Qk = iijw^ w[ J 

G/t-i is the system noise coefficient matrix which represents how the system 

noise w is distributed among the INS error state components. 

p-
k is the priori estimate of the covariance matrix for the estimate of the error 

state vector x where: Pk = E^xk - xk )(xk - xk )T J 

In most KF implementations the sensor noise portion of this State Transition 

Matrix is based on a 1st order Gauss Markov model (a stochastic model) as shown in 

equation 2.34 and equation 2.35. 

The state transition matrix Fk,k-\ can be obtained using the following Taylor 

expansion approximation equation: 

FkM = exp(FA0 ~ l + FAt (2.39) 

b) The Update Stage 

The update stage corrects the Estimated State Vector fus ing new 

measurements. This is carried out in the following equation: 

xk ~ xk + Kk \Zk - Hxk) (2.40) 

The Kalman Gain Matrix Kk is the optimal weighting matrix for combining new 

GPS data with priori estimate jc^. Here, the size of Kalman Gain Matrix (Kk) is 15 (for 

each Error State) by 6 (for each value of Design Matrix Variable). Mathematically it is 

expressed as the following equation: 

Kk=p-HT
k(HkP-HT

k+Rkr
l (2.41) 

GPS position and velocity measurement update is given in following equation: 
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zk = \pms - <P,»* Ams - xGK h » - h - VL - v<PS v;i
m - vj„s. v;NS - v o ; , f 

(2.42) 
The Measurement Vector (zk) of update stage can also be represented in the 

following form as it is the difference between the INS and GPS position and velocity: 

Zk ~Hkxk +v (2.43) 
Here in equation 2.37 and 2.40, Hk is the Design Matrix which provides ideal 

noiseless relationship between the measurement vector Zk a°d the INS Error State 

Vector^ . The Matrix (Hk) is designed with the number of common parameters between 

INS and GPS (six in total: <p, X, h, V, V and V")- The number of rows is equal to the 

number of common parameters and the number of columns is equal to the length of the 

error state vector x. 

The Error Covariance Matrix (P) has the size 15x15 (where the initial values 

only on the diagonals) is updated in this stage with the following equation: 

PK=(I-KkHk)Pk- (2.44) 

The Measurement Error Covariance Matrix (/?*) is one of the parameters of KF 

that needs to be tuned for successful KF implementation. It is expressed as: 
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(2.45) 

The update procedure of KF is implemented at a lower rate than the prediction 

because IMU sensors provide data at a much higher rate than GPS (50 to 200 Hz vs. 1 

Hz). GPS-derived accurate positions and velocities are excellent external measurements 

for updating the INS, thus improving the applications' long-term accuracy. The INS in 

an integrated GPS/INS system is responsible for interpolating position between updates 

(short-term positioning component) as well as providing attitude information [4]. This 

phenomenon has been illustrated at figure 2.18 (reproduced from [4]). When a GPS 
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outage is detected the KF runs only the prediction stage. As, the GPS signal returns, it 

resumes the update stage. 

GPS GPS GPS GPS GPS 
Update Update Outage Outage Update 

: ' : Prediction | Prediction | Prediction 
" A A Prediction U-

Figure 2.18: Illustration of GPS/INS data sampling and KF (in prediction and update mode). 

Readers are encouraged to go through the reference [12] for more details on KF 

theory, its application and related issues. 

2.10.3 Limitations of KF 
KF only works well under certain predefined models and sensor outputs that fit 

properly. It is difficult to set the initial values for some parameters involved. An accurate 

stochastic model for IMU sensors (accelerometer and gyro) that works in all cases is 

also difficult to set. The performance of the inertia] sensors is directly proportional to the 

sensor cost as the sensors do not conform to traditional error models [17]. 

The low-cost tactical or MEMS-based IMU sensors have very high and varying 

drift rates. As a result, in the absence of GPS update measurement, the KF based 

integration solution using a lower grade INS can degrade (during the prediction stage) 

dramatically over time and follow the same exponential error trend as the mechanized 

(without the benefit of KF) INS data [5,6]. 

The measurement covariance matrix (/?&) is of great importance to determine the 

KF output. It determines how good the measurement model derived from the 

measurements by IMU sensors are. The shortcoming of the KF model for GPS/INS 

integration is usually due to non-modeling, mismodeling or ignoring one of the 

correlated noises of IMU sensors. 

Another challenge is to set the initial values for the system noise covariance 

matrix Qk,k-\ as it cannot be set to zero due to the inaccurate measurements (with noise) 

of accelerometers and gyros. The role of this covariance matrix Q is to define the width 

of the uncertainty after each step. In other words, it determines to what extent the 

predictions by the KF can be trusted. A large value of Q enlarges the uncertainty and 
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results in a noisy estimate while a smaller Q results in a smoother estimate. A correct 

value of Q is critical for achieving practically sound KF outputs as it depends on factors 

such as system dynamics and sensor noise level. Thus the requirements to tune KF 

parameters (Q and Rk) pose a challenge in GPS/INS integration [19]. 

2.11 I ML) data preprocessing using Wavelet De-noising 

The accuracy enhancement of IMU sensors to improve the navigation solution is 

an important field of research [5] [6]. The short-term (high frequency) errors resulting 

from the INS mechanization process (described in section 2.9 of this thesis) section can 

be removed through signal processing techniques such as low-pass filtering (LPF). This 

is generally effective to reduce errors with frequencies above the true motion dynamics 

bandwidth. Attempting to remove noise in the true motion dynamics bandwidth with a 

LPF runs the risk of compromising the measurements of the actual vehicle motion [5]. 

Wavelet de-noising is based on Wavelet Multi Resolution Analysis (WMRA) which 

uses the Discrete Wavelet Transform (DWT). WMRA, DWT and their effectiveness on 

signal analysis and de-noising over LPF technique and for other techniques constitute a 

vast field of subject matter [20]. For simplicity, only a real-time implementation of this 

technique used on IMU sensor data will be discussed in this section. 

The DWT of a discrete time sequence x(n) is expressed as [6]: 

c/,t =2 ( ~ / / 2 ) 2>(nM2- ' t t -&) (2.46) 

Where, 

if/ (n) is the wavelet function 

2(~i/2)y/(2~Jn-k) is the scaled and shifted version of \|/(n) based on i and j 

j and k scaling and shifting coefficients which are always an integer 

For different scaled and shifted versions of y/{n), Cj,k represents corresponding 

wavelet coefficients. The original signal x(n) can be generated from the corresponding 

wavelet function [20]: 

x{n) = YLCuu¥,An) (2.47) 
j k 
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The WMRA can be implemented using a bank of half-band low pass and half-

band high pass discrete time filters. The low-pass portion contains the low frequency 

components of the signal, which are known as the approximations. The high pass 

portion contains the high frequency components of the signal, which are known as the 

details. The approximations and details are each down sampled to half the number of 

points. With enough levels of de-composition, high frequency noise components (i.e. 

white noise) can be separated from the signal. There are essentially three principle steps 

in wavelet de-noising. They are: (1) De-composition of the signal with a wavelet basis 

function to a chosen level; (2) Threshold the details coefficients at each level; (3) 

Reconstruct the signal using the thresholded wavelet coefficients [6] [20]. 
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I = Wavelet Coefficient Thresholding 
Figure 2.19: Illustration of the three steps of Wavelet De-noising Procedure a) de-composition, b) 

thresholding and c) reconstruction. 

To reduce the impact of short term (high frequency) INS sensor errors, the 

bandwidth of true motion dynamics are identified by spectrum analysis and a de-noising 

algorithm is applied. The mathematical procedure involved for the implementation of 

WMRA is illustrated in the following sub-sections: 

2.11.1 Signal De-composition and Reconstruction 

As shown in figure 2.19 (modified and reproduced from [6]), the WMRA builds 

a pyramidal structure or an iterative application during signal de-composition. The low 

pass filter and the high pass filter initially act on the entire band and gradually reduce the 

signal band at each stage. In the figure, the high frequency band outputs are the detail 

coefficients (D\, D2 and D3) and the low frequency band outputs are the approximation 

coefficients (Al,A2 and A3). For an input signal x(ri), the approximation coefficient a^ 

at t h e / ' resolution is [6] [20]: 
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ajk=2'->'2^x(n)0(2-Jn-k) 
(2.48) 

Here, (j){n) is called the scaling function. The scaling function is similar to the 

wavelet function except that they have only positive values. It smoothes the input signal 

and operates in a manner equivalent to low pas filtering. The approximation of x{n) at 

theyth level can be computed as [6] [20]: 

*;(/O=i>M0,-.*(«) (2-49) 

The details coefficient d^ at the y'th resolution level and detail signal gfn) are 

then computed: 

n 

Here, y/j k (n)IS m e w a v e l e t basis function. The above steps (equations 2.48 to 

2.51) are repeated for the j+\ resolution level using the approximation signal xj(n). 

The original signal x(n) can be reconstructed using all the detail coefficients 

obtained during the de-composition process (starting from the first de-composition level 

until the last level) and the approximation coefficients of the last resolution level. The 

following equation illustrates this (where the de-composition was done till 7th resolution 

level)[6] [20]: 
CO . / » 

x(n)= 2XA/» + Z Hdi,k¥i,M) 
k=-°° '= ' k=~°° (2.52) 

Here, in the above equation, the first term represents the approximation 

coefficient at level J. The second term represents the detail coefficients at resolution 

level J and lowers [6] [20]. 

Each time the signal is passed through a set of filter banks it is said to have a de­

composition level of one. In figure 2.19, a level of de-composition (LOD) of 3 is shown 

as the original signal has passed through 3 banks of discrete filters. These filters initially 

act on the entire signal band at the small scale values (i.e. at the higher frequencies). 

Gradually the band size reduces in each de-composition level/stage. In the same figure, 
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the low-scale or the high frequency band outputs are presented by the detail coefficients 

iP\, D2 and D3) and the high-scale or the low frequency band outputs are presented by 

the approximation coefficients (A\,Ao and A3). 

2.11.2 Wavelet Coefficient Thresholding 

Thresholding operation is crucial on the detail coefficients of the (wavelet) 

decomposed signal to ensure the effective cancellation of the interference of noisy signal 

with a minimum distortion to the sharp transition details of the true signal. Unlike, signal 

de-composition and reconstruction of DWT, it is a nonlinear operation. Two 

thresholding operators, the soft and the hard are proposed by Donoho, D. [21]. In hard 

thresholding procedure, any wavelet coefficient with an absolute value below the 

threshold is replaced by zero and coefficients with an absolute value above the threshold 

are kept the same. In soft thresholding procedure, any wavelet coefficient with an 

absolute value below the threshold is replaced by zero as like the hard threshold 

procedure. But the coefficients with a magnitude above the threshold are reduced or 

shrunk in value by the threshold value. These procedures are expressed in the following 

table (after [21]): 

Table 2.3: Wavelet coefficient (hard and soft) thresholding equations. 
Hard thresholding equation 

Soft thresholding equation 

[OJ if |y |<r 

{y-T.sign(y)) if \y\>T 
th{y) = \J S J 

1 0 \if \y\<T 

Here, T is the threshold value. The same value of T can be applied to detailed 

coefficients of every de-composition level assuming the original signal is affected by a 

white noise. Here, signQ represents the sign operator. T is selected according to the 

standard deviation of the Gaussian noise (a) affecting the original signal and the length 

of the observations/samples of the original signal (N) [6][21]. 

T = afi^N (253) 

The standard deviation can be estimated from the median of its finest scale 

wavelet coefficients, provided that x(t) is piecewise smooth [6][21]: 
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G ~ Med(\x(t)\) 
0.6745 ^ " (2.54) 

Med(|x(f)|) is the median value of the sequence x(t) which is actually the detail 

coefficients of the finest resolution level. 

Now, in case of the noisy components of the original signal are not white 

(colored signal which is mostly the case with raw data of IMU sensors), the Gaussian 

noise (a) is estimated adaptively in each level of de-composition. 

T = Aj*.j2\og(N/V) (255) 

Here, j is the de-composition level and Xj is a level dependent relaxation factor. 

In the orthogonal wavelet de-composition, the detail coefficients decrease with the 

increase of levels, Xj is used to achieve a balance between the cancellation of noisy 

components and distortion to the signal details. A simpler version of the soft 

thresholding technique assumes Xj to be equal to 1. In each level of de-composition, the 

number of detail coefficients is halved (constant N divided by 21 where j is the de­

composition level number) [21]. 

2.12 Chapter Summary 

This chapter presented the principles of GPS operation and errors related to 

vehicle navigation. It then focuses mainly on Inertial Navigation System using IMU 

sensors suited for land based navigation. It defined inertial navigational equations by 

introducing the related theories/concepts and mathematical notations in the sections 2.2 

to 2.6. The mathematical equations and operations/techniques (mechanization, KF and 

de-noising) presented in the later part of the chapter (from the section 2.7 to 2.10) are 

thus based on these basic concepts and mathematical notations. Then in the following 

chapter (chapter 3), a functional NCU has been built on an embedded platform using 

IMU sensor data and GPS receiver data. 

In summary, a minimally functional NCU using IMU sensor data and off-the-

shelf GPS receiver executes these techniques in the following order as presented in this 

chapter and as have been chosen to implement on a low cost embedded platform in order 
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to provide a navigational solution in conjunction to an existing GPS navigation 

technology (during a GPS outage) on a land vehicle: 

a) Pre-processing of low-cost IMU sensor data: 

• Wavelet de-noising. 

b) INS mechanization: 

• Correction of raw data for known or estimated errors (bias and scale factor 

correction). 

• Attitude update. 

• Transformation of specific force to navigation frame of interest. 

• Calculation of velocity and position. 

c) GPS/IMS data fusion using 15 state KF: 

• Calculate the INS error state equation 

• Using the error equations, KF model equations are used for prediction and 

update (if GPS data is available) stages to enhance the reliability of the INS 

solution. 
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CHAPTER 3: Implementation Methodology 

Chapter 3 begins with short summaries of the embedded system platform's 

components i.e. FPGA chip, the corresponding board and the Xilinx MicroBlaze soft 

core processor (SCP) that runs on its fabric— used in the implementation. Afterwards, 

the design and development of the hardware and the software components for 

implementation are detailed. The IMU sensor data set used to establish a navigational 

application implementation is presented in this context. 

3.1 Hardware/Equipment Setup 

Figure 3.1 shows the hardware/equipment setup in the form of connection 

between PC and the FPGA board that has been used to do the experiment to emulate the 

implementation methodology. The parallel cable was used to download the bitstream of 

FPGA configuration (generated by Xilinx EDK software tool on the PC) to the FPGA 

through its JTAG interface. The Serial cable was used to establish the data 

communication between the PC and the serial port of the FPGA. 

Figure 3.1: A snapshot of the hardware/equipment setup for the implementation. 

3.1.1 Development Boards 
An FPGA (Field Programming Gate Arrays) is a semiconductor device 

containing programming logic components called "logic blocks" as they are 
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interconnected through horizontal and vertical routing channels. FPGAs are used for 

prototyping any design as they offer great flexibility in design procedure. 

The Spartan-3 Starter Board developed by Digilent Inc. was used primarily in 

this thesis which provides a development platform containing the Spartan-3 FPGA of 

Xilinx. It features Spartan-3 XC3S200 FPGA (containing 200 thousands gates) which is 

clocked by an onboard oscillator operating at 50 MHz, IMiB asynchronous SRAM, a 

UART (serial port) interface, a JTAG port, a VGA display port and several other (PS/2 

port, expansions slots, dipswitches, pushbuttons etc.) on-board I/O devices. Thus it can 

hold from a simple logic circuit to an embedded processor core [22]. It ships with a 

power supply and a programming cable and an adapter to power the board. The 

hardware designs were downloaded to the FPGA via the onboard JTAG interface. 

Even though, the board comes with lots of features and peripherals most of the 

resources were not used as illustrated in figure 3.2. A final navigation solution on a 

platform with just only three hardware components of the board as shown in figure 3.2 is 

expected to be cost-efficient. 

displays 

Figure 3.2: Block diagram of S-3 Board (resources used have been shaded) 

Apart from the Spartan-3 XC3S200 FPGA chip of the Spartan-3 Starter board, 

the following onboard features are used in the implementation: 

• 1 MiB of SRAM for storing programs. 

• UART interface for output. 

• JTAG interface to download the bitstream. 
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At the later stage of the implementation, in order to make the code run faster, 

Xilinx University Program (XUP) Virtex-II Pro Development Board was used as the 

FPGA chip with more high-speed block ram (BRAM) memory resource. It is an 

advanced hardware platform (compare to Spartan-3 Starter board) consisting of a high 

performance Virtex-II Pro FPGA surrounded by a collection of peripheral components. 

In this thesis, apart from its FPGA chip resources (specifically its increased size of 

BRAM), the serial port, the JTAG port and the digital clock are used [23]. 

3.1.2 Serial Cable 

Serial port interface is simple, low-cost and comparatively low-speed interface to 

establish data communication between PCs' (also known as terminal equipment) and 

other devices (also known as communication equipment). Two RS-232 

transceivers/voltage level translators are available in the S-3 board. One (labeled J2 on 

the S-3 board) connects directly to the FPGA chip by way of 9-pin header of female 

DB9 connector. It can be accessed by simply implementing a UART in the FPGA fabric. 

A standard straight-through serial cable (male-female) is used to connect the FPGA 

board (which has female DB9 connector) to the PC's serial port known as COM1 or 

COM2 (which has male DB9 connector) [22]. 

3.1.3 Parallel Cable IV 

A Xilinx Parallel Cable IV (known as "Digilent Low-Cost Parallel Port to JTAG 

Cable") is used to connect the parallel port of a PC to the JTAG port of the S-3 board. 

This single cable comes with the S-3 board and allows users not only to download the 

bitstream from the PC through parallel port to the FPGA chip through the JTAG 

interface but also to debug FPGA implementation. In the same way, to configure the 

XUP Virtex-II Pro Development System externally through USB JTAG interface the 

embedded Platform Cable USB (supplied with the board) is used. Readers are 

encouraged to consult references [22] and [23] for more details on FPGA, serial port and 

parallel port. 
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3.1.4 Terminal Program 

The application "Hyper Terminal" and/or "Terminal VI.9B" for Windows were 

used to retrieve data sent from the S3 and V-II Pro boards through the serial cable. 

The terminal program lets a computer (PC) connect to other computer, internet 

telnet sites and host computers using a modem, a null modem serial cable or a network 

connection. In the implementation, both Hyper Terminal (comes with included with 

Microsoft Windows OS) and/or Terminal VI.9B (a freeware) was used as the interface 

to the FPGA board. Through the serial cable connecting to the COM1 port of the PC 

Data can be sent to the FPGA and receive back and display them on the Hyper Terminal. 

The terminal program settings for use with these projects are given in the table below. 

Table 3.1: Terminal program settings used for retrieving data from FPGA boards. 
Baud rate 
Data bits 

Parity 
Stop bits 

Flow control 

115200 bps 
8 bits 
None 
1 bit 

None 

3.2 Embedded Platform 

This section starts with a description of the tool used (to implement the 

embedded system) in this thesis namely Embedded Processor Development Kit (EDK) 

developed by Xilinx. Before downloading the bitstream, it synthesizes the 

microprocessor hardware design, maps it to target FPGA chip and generates the 

bitstream. A brief description of MicroBlaze soft core processor (SCP) is then presented 

with its different bus connectivity and functionality. Finally, the different peripherals 

that were used to develop navigation algorithms on MicroBlaze processor have been 

described. Readers are encouraged to consult references [24] and [25] for more details. 

3.2.1 Development tool Xilinx EDK 

Xilinx Embedded Development Kit (EDK) is a development environment where 

the hardware is instantiated as different IP-blocks connected via buses and signals to 

develop embedded processors such as MicroBlaze and PowerPC. The software is 

developed on top of the generated libraries of the hardware design. It provides a 



50 

framework for designing hardware/software components of embedded processor 

systems on programmable logic fabric of FPGA. It includes an integrated development 

environment (DDE) with a GUI named Xilinx Platform Studio (XPS). It is used to design 

a complete embedded processor system for implementation specifically on Xilinx FPGA 

device [25]. 

The EDK contains the following tools [25][27]. 

Xilinx Platform Studio (XPS) Tool Suite which is a graphical IDE and command 

line support for developing and debugging HW/SW platforms for embedded 

applications. By compiling the software and implementing the hardware, XPS acts as a 

graphical front-end. It also has design wizards to configure the embedded system 

architecture, buses and peripherals 

Software Development Tools for MicroBlaze and PowerPC which include GNU 

C/C++ compiler and debugger, Xilinx Microprocessor Debug (XMD) target server, 

Data2MEM utility for bitstream loading and updating, Base System Builder (BSB) 

configuration wizard and Platform Studio SDK (Software Development Kit) software-

centric design environment based on Eclipse IDE etc. 

The EDK also contains stand alone Board Support Packages (BSPs) for non-

RTOS systems of MicroBlaze and PowerPC. It also contains BSPs for different RTOSs 

namely Wind River VxWorks and Embedded Linux (running on PowerPC) and support 

for Xilinx MicroKernel (XMK) Systems. 

3.2.2 MicroBlaze Soft Processor Core 

As mentioned in chapter one, one of the motivations behind using soft processor 

core (SCP) on a FPGA lies in its low-cost. A MicroBlaze SCP costs US $0.48 whereas 

any other microprocessor (found inside a PC) costs in the order of hundreds of dollars. 

Moreover, the FPGA chip price which is below US $2.00 with more than 100K gates 

system (such as Spartan-3 FPGA) makes it a feasible and cost-effective embedded 

platform to be used in applications related to automobile navigation [26]. 

Microblaze microcontroller is an integrated solution intended for implementation 

of an embedded controller in the FPGA. A soft core processor (SCP) like MicroBlaze is 
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downloaded into the FPGA chip as bitstream format. In contrast to hard core processors 

like most other processors (IBM's PowerPC, Intel's Pentium etc.) which are real 

physical processors. The MicroBlaze SCP embedded over FPGA fabric (i.e. as the 

bitstream is downloaded on it, a processor is created out of the configuration logic bloc) 

is a 32-bit Harvard architecture processor which has physically separate storage and 

signal pathways for instructions and data with an instruction set provided by Xilinx. The 

MicroBlaze embedded soft core is a Reduced Instruction Set Computer (RISC) 

optimized for implementation in Xilinx Field Programmable Gate Arrays (FPGAs). 

MicroBlaze is configurable as it allows the users to select a specific set of features 

required by their design. The processor's fixed feature set includes 32-bit general 

purpose registers, 32-bit instruction word with three operands and two addressing 

modes, 32-bit address bus and single issue pipeline [24]. 
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F i g u r e 3 .3 : An illustration of the embedded platform used in this thesis work. 

MicroBlaze supports three interfaces with separate bus interface units for data 

and instruction accesses. They are Local Memory Bus, On-chip Peripheral Bus and 

Xilinx Cache Link. Local Memory Bus (LMB) provides single-cycle access to on-chip 

dual-port block RAM. IBM's On-chip Peripheral Bus (OPB) interface provides a 

connection to both on-chip and off-chip peripherals and memory. Xilinx Cache Link 
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(XCL) includes up to 8 Fast Simplex Link (FSL) ports, each with one master and one 

slave FSL interface [25]. 

In addition to the static features, the MicroBlaze SCP is parameterized for 

additional functionalities such as: On-chip Peripheral Bus (OPB) data side interface, On-

chip Peripheral Bus (OPB) instruction side interface, Local Memory Bus (LMB) data 

side interface, Local Memory Bus (LMB) instruction side interface, Hardware barrel 

shifter, Hardware divider, Instruction cache, Data cache, Hardware debug logic, Fast 

Simplex Link (FSL) interfaces, Machine status set and clear instructions, Cache Link 

support, Hardware exception support, Pattern compare instructions, Floating point unit 

(FPU), hardware multiplier etc. [24] 

3.2.3 MicroBlaze Processor peripherals 

The EDK tool allows users the ability to connect MicroBlaze with large number 

of commonly used peripherals available in the EDK peripheral libraries. It also allows 

users to implement custom peripherals functionality not available in the EDK peripheral 

libraries. These peripheral devices are connected mainly through its OPB bus and also 

through LMB bus. 

The LMB is a fast local bus with separate read and write data buses. It is a single 

master bus and unlike IBM's OPB bus it requires no arbiter. It connects MicroBlaze 

instruction and data ports to high-speed peripherals, primarily BRAMs. The LMB 

provides single-cycle access to on-chip dual-port block RAM. Separate instruction and 

data cache units can be enabled. ILMB (Instruction side Local Memory Bus) and DLMB 

and (Data-side Local Memory Bus) are connected to the dual-port BRAM. This memory 

is also used for bootloop storage. 

SRAM on the S-3 Board is connected through an External Memory Controller 

(EMC) module with the OPB bus of MicroBlaze processor. 

JTAG port was used for transferring the bitstream as well as the ELF (execution 

and linking format) file containing the software architecture to the SRAM. It is also used 

for debugging. Microprocessor Debug Module (MDM) on the OPB bus is used for 

JTAG-based debugging. 
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A free-running Timebase and Watchdog Timer peripheral is attached to the OPB 

bus. One of the purposes of using this is to measure/calculate the number of clock cycles 

required to execute a certain portion of code/instructions on a MicroBlaze platform. 

RS232 serial port on the S-3 Board, connected to a UART peripheral on the 

processor OPB bus of MicroBlaze, are used as standard in and standard out devices. 

MicroBlaze SCP has one interrupt port and it can be connected to the peripheral 

that requires it. An interrupt controller peripheral is required for handling more than one 

interrupt signal. On interrupts, MicroBlaze jumps to address location 0x10 which is part 

of the C runtime library and contains a jump to the default interrupt handler. This 

function is part of the MicroBlaze Board Support Package (BSP), which is provided by 

Xilinx. 

3.3 Hardware Platform Development 

"Hardware platform" is a term used by Xilinx to describe the embedded 

processing subsystem created using EDK tool according to the need of the application 

being implemented. The hardware platform consists of one or more processors and 

peripherals connected to the processor buses. EDK captures the hardware platform in the 

MHS file (Microprocessor Hardware Specification). It allows the users to customize the 

hardware logic in the processor subsystem [25] 

3.3.1 Building processor core 
The Base System Builder (BSB) wizard of EDK tool helps users to quickly build 

a working system targeted at a specific development board. It was used to develop the 

hardware platform as the target of the software code of navigation application developed 

in this thesis. Instead of adding any embedded Operation System (embedded OS like 

XilKernel, ucLinux etc.) on top, a standalone platform has been chosen to keep the 

functionalities simple. 

MicroBlaze running at 50 MHz with FPU unit option enabled was chosen as the 

processor for the hardware platform for Spartan-3 Starter Board. The LMB BRAM 

interface controllers only support power of 2 sizes (e.g.8KiB, 16KiB, 32KiB, 64KiB, 

etc.) and the Spartan-3 Starter Board can be configured with up to 16KiB of BRAM. The 



54 

navigation application code for (2D, 3D Mechanization, KF and wavelet de-noising) was 

found to be too large to fit in the on-chip BRAM. The external memory (1 MiB of 

SRAM) available on the Spartan-3 Starter Board (shown in figure 3.2) for storage of the 

code (both instruction and data) was included with the hardware platform design. It was 

connected to the OPB bus of the MicroBlaze processor through an OPB External 

Memory Controller (EMC) unit. While using the external memory, only 8KiB BRAM 

resource was used for storing the bootloop information and software stack/heap data and 

the rest of the BRAM resources were configured for caching the external memory. Up to 

4KiB of OPB Instruction Cache and 8KiB of OPB Data Cache were enabled with 

available BRAM resources of the Spartan-3 Starter Board to accelerate the code 

execution from the external memory (connected to MicroBlaze through OPB bus). 

With the XUP Virtex-II Pro board, the processor was configured with 64KiB 

BRAM as it successfully accommodated the decentralized KF code (developed in C) 

within 64KiB BRAM configuration. As a result, no external memory (and of course no 

caching) was required to configure with the hardware platform. MicroBlaze has been 

configured with 100.00 MHz clock frequency as it contains faster DCM. Also, the FPU 

option was enabled. Unlike Spartan-3 Starter board, the BSB wizard of Xilinx EDK does 

not contain the XUP Virtex-II Pro Board Definition file by default. It was downloaded 

from the manufacturer Digilent Inc.'s website [23]. 

RS-232 serial port with UART LITE IP (included with the BSB tool) was 

configured as STDIN and STDOUT for the MicroBlaze running on both the boards with 

parameter set according to the PC's terminal program shown in table 3.1. For both 

boards, hardware debug module was enabled. 

3.3.2 Measuring the timing performance 

Number of clock cycles spent/used by software code running on MicroBlaze was 

measured using a watch-dog timer connected to the processor's interrupt port. Software 

intrusive code profiling is supported by the MicroBlaze and for this GCC/GPROF tools 

are provided with EDK. But, to enhance the accuracy of the measured clock cycles, a 

watch-dog was used instead as illustrated in figure 3.4. 
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WDT interrupt starts 
(registering the clock count = tx) 

WDT interrupt ends 
(registering the clock count = te) 

C source code 

Figure 3.4: Illustration of the measurement of clock cycles (fe-fs) to execute a certain portion of C code on 
MicroBlaze. 

Unlike PowerPC, MicroBlaze SCP does not have a time-base register inside the 

processor that works with the system clock. A watch-dog timer (WDT) was attached like 

a 32-bit peripheral with the OPB bus that contains a time-base register. While building 

the processor core using the Base System Builder (BSB) wizard of EDK, the TimeBase 

WatchDog Timer (TBWDT) was chosen as a peripheral with interrupt option. Thus, an 

interrupt signal is provided that pulses high for one clock period as the time-base counter 

rolls over from OxFFFFFFFF to 0x00000000. Interval length/count bit option for the 

timer was chosen as 31 bit (the maximum possible length) and the option for "WDT can 

be repeatedly enabled/disabled via software" was selected. 

3.4 Software Coding 

In this section, the details associated with the C coding (on MicroBlaze platform) 

of the navigation algorithms are described. 

The software coding of the navigation application (derived from the theoretical 

understanding/research shown in chapter 2) was carried out mainly in three phases. In 

the first phase, 2D, KF and wavelet de-noising (applied on EVIU raw data) model was 

created in Matlab environment. To this end, a working 3D Mechanization Matlab model 

provided by Advanced Navigation and Instrumentation (ANI) Research Group of Royal 

Military College was used [28]. Then from the Matlab environment, the coding was 

carried out in Microsoft Visual Studio environment using C programming language. At 

the final stage of the coding, the debugged and validated code (with respect to the 
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Matlab models) from Microsoft Visual C environment was ported to the MicroBlaze 

environment. 

As mentioned before, an existing 3D Mechanization Matlab model was supplied 

by ANI research group [28] along with the GPS and corresponding IMU sensor data in 

ASCII format. The existing 3D Matlab model was extended to a working KF model that 

was capable of providing a position error of just above 30 meter in the case of a 20 

seconds GPS outage. By tuning and tweaking the initial parameters (such as covariance 

values of update position and velocities of GPS and the co-variances of the INS error 

states) this result could have been improved and the created Matlab model could have 

been validated by measuring its performance during numerous forced GPS outages. 

Wavelet de-noising and thresholding algorithm was developed in C and the plots 

showing de-noised IMU data (operating in real-time mode) were obtained (shown in 

figures 4.10 and 4.14 of chapter 4). However, its improvement in the solution domain 

could not be validated as the developed KF using de-noised data could not provide better 

result. As the data set for the KF was changed (from noisy data to de-noised data), the 

KF parameters were changed as well. The parameters could not be successfully tuned 

and tweaked in the way it was done for the noisy data set (of a specific forced outage 

shown in figure 3.7). As mentioned in reference [18] about the limitations of KF: "It 

requires a human expert to tune the optimal parameters of the Kalman filter (i.e. Q and R 

matrices). In addition, these parameters are sensor dependent." 

As the focus of the thesis is to verify the feasibility of navigation algorithms on 

embedded platform and analyze its performance, a KF model implementation with an 

acceptable error margin for a single forced GPS outage is shown in chapter 4. For low 

end tactical grade, KF should be able to provide 20 m position errors maximum during 

20 sec outages [29]. Thus the development of a fully functional KF model working 

perfectly for any outage (and providing better results on de-noised IMU data) can be 

considered as a future extension of the research. 

TG6000 EVIU's gyro's output data are in degree format. To facilitate the 

trigonometric operation, gyro data were converted from degree to radian. In the same 
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way, accelerometer sensors' raw data were transformed from gravitational acceleration 

unit ('g' unit) to m/s~. 

The IMU data file was supplied with bias and scale factor values for each gyro 

and accelerometer sensor. As illustrated in table 2.2 of the thesis, these values were 

obtained in a laboratory environment. After unit conversation, the bias and scale factor 

convertion was carried out for each sensor's output at every time interval. To illustrate 

this fact, a module titled "Bias and Scale factor correction with Unit Conversion" 

was added with the block diagrams of 2D, 3D Mechanization and KF (figure 2.10, 2.17 

and 2.18 respectively) 

The initial position and velocity before the GPS outage were obtained using the 

corresponding GPS position and velocities. The initial heading of the vehicle was 

determined using the incremental GPS latitude and longitude values just before the 

outage. For simplicity and assuming that vehicle was running on a smooth road surface, 

the roll and pitch values were initialized to zero. 
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Figure 3.5: Block diagram of current/existing Automobile Navigation Product in the Market as 
portable in-car GPS device 
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Figure 3.6: Block Diagram of the Navigation solution implemented this thesis. 
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As shown above in figure 3.5, the block diagram represents the existing 

navigation product available in the current market. The figure 3.6 summarizes the 

implementation work (both in terms of hardware and software) carried out in this thesis. 

3.4.1 Land Vehicle Navigation Data 
Implementing navigation algorithms involves processing navigation data. At the 

first stage of the development, the ideal scenario for a thesis/project establishing the 

feasibility of using embedded processor would require simulated IMU sensor data 

(accelerometer and gyro data) for a reference trajectory (with position and corresponding 

velocity information at each time instance). The second best scenario would be to use 

low-cost IMU sensor data collected from a field experiment. 

Due to limited resources, simulated data could not be procured. A road test data 

involving GPS and tactical-grade IMU namely TG6000 (KVH Industries, Inc., 

Middletown, RI) have been obtained thanks to ANI research group [28]. The TG-6000 

measures angular rate and linear acceleration in the X, Y, Z axes with three fiber optic 

gyroscopes and three accelerometers. The data has been provided to MicroBlaze to 

perform the navigational algorithms mentioned in chapter 2. 

- nlop.u. ^ c b r ' r r ' 

Figure 3.7: Complete map of the trajectory while the black circled location is the IMU sensor (during a 
simulated GPS outage) data used. 
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3.4.2 2D Mechanization 
Yaw (heading) angle was calculated in radian using the equation (2.13). Using 

this value, accelerometer outputs (fx and/3,) were transformed to the local level frame in 

equation (2.14). East and North velocities were calculated using equations (2.15) and 

(2.16), position information was obtained as a unit conversion is applied (shown in 

equation (2.23) and equation (2.24) and illustrated in the figure 2.15) to obtain the final 

output in radian. 

3.4.3 3D Mechanization 
Using the initial attitude information, a DCM matrix is constructed as shown in 

equation (2.8). This DCM matrix is then transformed to quaternion parameters using the 

equation (2.6). Now, from the initial parameters of the quaternion, the parameters for the 

next/current time step are obtained. 

Using the new attitude parameters for the current time step, equation (2.24) and 

equation (2.27) are used to obtain velocity and position domain solution respectively. 

A simple second order Runge-Kutta integration method has been used to 

transform the velocity increments to position increments. Instead of integrating by fixed 

time step integration method (Euler integration), the output has been smoothed to an 

extent in this way. The Euler integration algorithm works by assuming that the slope of a 

function is constant over the period of integration. The second order Runge-Kutta 

algorithm provides some compensation for changes in the slope over the integration 

interval [10]. 

3.4.4 Kalman filter 
For low-cost IMUs like tactical-grade EMU, the mechanization procedure only 

gets fulfilled after combining it with a working KF Module which can be created after 

tuning many sensor noise variance values. 

The KF code was made to run for the first 10 seconds using the aid of GPS data 

and the next 20 seconds in standalone mode. This 20s corresponds to the same forced 

GPS outage as applied to the 2D and 3D INS Mechanization implementation shown in 

the previous two sections. In both non-outage and outage scenario, the KF code went 
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through prediction and update stages but by using two different Error Covariance Matrix 

(Rk) values as shown in equation (2.45). During the outage, a higher value of Rk matrix 

was used as a higher standard deviation would decrease the KF's reliance on the Error 

Measurement Vector Zk (shown in equation (2.42) and (2.43)) and, thus, increase its 

confidence in the INS output. 

Using the INS error equations, represented by equations (2.30) to (2.35), error 

state transition matrix Ft,k-i of size 15x15 was constructed. As shown in equation (2.37), 

in prediction stage, the 15 error state shown in equation (2.36) gets propagated to the 

next time step by being multiplied with the 75x75 matrix. Then, using equation (2.38), 

the covariance matrix of this new predicted error state (Pk~) is obtained. 

In the update stage of the KF, the Kalman Gain Matrix (K^), in equation (2.41), 

is obtained using the Covariance Matrix for the estimate of the Error (Pk~) and 

Measurement Error Covariance Matrix (Rk). 

The Kalman Gain (Ku) matrix is then used to update the Covariance Matrix for 

the estimated error state (Pk) using equation (2.44). It is also used to update the 

estimated error state vector xk using equation (2.40) where the Measurement Vector is 

given by Zh 

The Measurement Vector Zk is obtained from GPS position and velocity 

measurement update as shown in equation (2.42). In the scenario of forced GPS outage, 

the last available GPS data (before the outage) is used in the calculation of Zk-

The final position, velocity and attitude output of KF is obtained by subtracting 

the corresponding value of the updated error state vector (xk). 

At the update stage of the 15 state KF Model, a 6x6 matrix inversion is involved 

as shown in the equation (2.41). To implement it, "Gauss-Jordan elimination without 

pivoting" technique has been used deriving from the code snippet shown at the reference 

[30] .Through debugging, it was observed that the matrix to be inverted 

(HkPk7HT
k +Rk)'

1 had always non-zero elements at the diagonal. As a result of this 

simplification, non-pivoting technique was chosen over pivoting technique. The 
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complexity of this computation is approximately (2n3/3). The corresponding number of 

clock cycles consumed to perform the 6 by 6 matrix inversion operation is shown in 

chapter 4. 

3.4.5 Wavelet De-noising 

One of the motivations of presenting this sliding window-based wavelet multi-

resolution based analysis and threshold is to show the real-time implementation on soft 

processor based low-cost FPGA. This thesis does not focus on the details of the 

accelerometer and gyroscope sensor data format (analog or digital, if digital then 

whether ASCII or in 32-bit format), sensor interface and other details. However, this 

module was built to verify the feasibility and to model the embedded implementation of 

any de-noising algorithm for low cost inertial sensors: may it be wavelet de-noising [4] 

or computation load intensive but highly effective high resolution spectral de-nosing 

algorithm like FOS [3]. 

Further research should be conducted on the following factors related to the 

optimum real-time de-noising of any accelerometer and gyroscope sensor data: 

1) The non-overlapping window data length 

2) Types of wavelet 

3) Level of Wavelet Multi-resolution analysis: how many de-composition levels are 

appropriate? 

4) Different threshold algorithms for the wavelet coefficients 

Two types of windowing techniques are usually employed in IMU sensors pre-

filtering technique implementation in real-time mode. They are: sliding window and 

non-overlapping window [31][32]. For non-overlapping window, the data set is 

portioned into sections of certain length. This non-overlapping style has been chosen due 

to the low level of complexity (in computation load) associated with it. Daubechies-5 

('db5') was chosen for implementing wavelet de-noising as it has been deemed 

appropriate for low cost IMU sensors as used in reference [32] in real-time 

implementation. 
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The optimal level of de-composition varies with the bandwidth of true motion 

dynamic in each sensor [18]. The sampling rate of the IMU data used in this thesis is 75 

Hz, a 3 LOD for a>x, coy mdfz data and a 5 LOD for fx,fy and coz would be appropriate 

according to the results presented in references [18] and [32]. Table 3.2 (adopted from 

[18]) illustrates the bandwidths of true motion dynamic sensed by different IMU sensors 

and also confirms, as 25 = 32, a 5 LOD would result the finest approximation 

coefficients to contain frequency contents of 0 Hz to 1.172 Hz of fx, fy and coz sensors' 
"2 

data. In the same way, as 2" = 8, a 3 LOD would result the finest approximation 

coefficients to contain frequency contents of 0 Hz to 9.375 Hz for cox, ooy and/; sensors' 

data. 

Table 3.2: Bandwidth of True Motion Dynamics of IMU sensor data. 
IMU 

Sensors 

Bandwidth 

Gyro 

w« 

<8Hz 

OJy 

<8Hz 

U)z 

<2Hz 

Accelerometer 

/* 

<2Hz 

fy 

<2Hz 

/ z 

<8Hz 

The common thresholding methods (namely rigsure, sqtwolog, heursure, 

minimaxi) implemented in the Matlab Wavelet toolbox [33] can be applied to analyze 

the best possible result for low cost IMU sensors' performances and that relates to a vast 

field of research [32]. In this thesis, a soft thresholding technique (shown in table 2.3) is 

applied over raw IMU sensor data with the level dependent thresholding technique 

shown in equation (2.52). To calculate the median of each detailed coefficients, a qsort 

algorithm is used [30]. 

3.5 Software Design Issues 

A "software platform" on MicroBlaze refers to a collection of software drivers 

and the operating system (if not a standalone application, then an OS such as XilKernel 

can be included) on which to build the given application. The software image created 

consists only of the portions of the Xilinx library used in the embedded design. The 

EDK tool captures the software platform in the MSS file (Microprocessor Software 

Specification). It automatically generates the memory map of the hardware platform as 
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well as assigning default drivers to the processor and each of its peripherals. Thus, as 

mentioned, the program running on the processor core is built using basic standard C 

[25]. Software coding in MicroBlaze was done using basic standard C libraries and 

device drivers since usually there is no operating system (known as 'standalone' 

application) between the software and the hardware platform. This is the language 

format supported by Xilinx Embedded Development Kit (EDK) tools. As mentioned 

before, EDK includes GNU C compiler and Xilinx Microprocessor Debug (XMD) 

module. The Base System Builder used for creating the hardware platform optionally 

generated a software project called "TestApp_Memory" which contained a sample 

application and linker script. The code developed in this thesis was built on top of this 

BSB generated sample software template. 

The "float.h" header file was included at the top of the .C file. Also, all floating 

point variables were assigned with single precision variable type float as they 

correspond to the default double in C programming language. The floating point 

variables/constants declared are initialized in the following fashion: 

f l o a t t e s t = O.OOf; 

The above code snippet illustrates the use of/ at end of variable declaration. In 

the same way, the single precision floating point supporting trigonometric functions 

were used e.g. s i n f ( ) , cos f ( ) , s q r t f () instead of s i n ( ) , cos () and s q r t () 

respectively to avoid any interaction with the default library implementation in double 

precision floating point format. 

Debugging on the application code for MicroBlaze was carried out manually in 

two phases. The first phase involved application code validation. It was done by 

simultaneously comparing the output of Microsoft Visual Studio environment with that 

of the MicroBlaze. In the second phase, for each small segment for the code its timing 

performance was obtained and improved by software code optimization. It was found 

that declaring function and variables with the ' / suffix as shown above (for performing 

single precision floating point operation instead of double precision floating point 

operation) significantly reduces code execution time. 
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3.5.1 Data I/O 

The EDK libraries contains reduced version of standard C functions for I/O, such 

as print(), xil_printf() suited for embedded processors due to the limitation of hardware 

area as opposed to desktop PC environment. This reduced version of I/O functions in 

size (only IKiB) does not offer support for floating point numbers [34]. Moreover, the 

xil_printf() included in the "stdio.h" header file treats every floating point values as 

double. Usually, C converts float to double before passing it to a variable argument of 

any function. It was found that "%/' expects a double, not a float, as it always was 

converted before the call. 

To overcome this problem, a snapshot of the memory content (i.e. performing a 

direct read of the memory content) is printed using the existing xil_printf() function. 

Following code snippet represents a typical scenario: 

float test = 22.002f; 
xil_printf("test = 0x%08x\r\n", * (int*)&test); 

Here, the 08x forces "%x" to print at least 8 character which is equivalent to 32 

bits. The float variable test is typecast to integer as floats and integers on the MicroBlaze 

are of the same size (4 bytes). Additionally, the reduced xil_printf() function on 

MicroBlaze provides full support for integer numbers. So, the value in memory is the 

same. A Matlab script was created to read each of the 8 ASCII character outputs (in 

Hexadecimal format) from the terminal, to translate it to the corresponding 32-bit 

representation (1 's and O's) and eventually to the corresponding IEEE-754 floating point 

decimal value for results analysis as performed in chapter 4. 

By using a custom function instead of using the standard I/O functions of the C 

library, the code size could have been further reduced. 

3.5.2 Run time errors 

Due to the large code size of KF model, several run-time errors were 

encountered. They are described here. 

In the process of debugging it was observed that after running a certain length of 

the code, all the variables values were turned into garbage values indicating a (negative 

or positive) overflow. After attempting different approaches to detect the reason and 
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overcoming the situation, it was found that an increase of stack size from the default size 

in the linker script resolves the issue. From this, it was concluded that a stack overflow 

caused run-time error. 

Another run-time error that occurred while implementing KF model was related 

to memory management. As the KF model includes several matrix variable declarations 

as large as 15x15 dimensions, the 2D array declaration for them as local variable was 

generating run-time error. To overcome this situation, double pointers were used with 

initialization using malloc() function. Another approach could have been using global 

variable declaration and thus avoiding the use of local variables. 
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CHAPTER 4: Results and Discussion 

Chapter 4 presents the result of the embedded implementation described in 

chapter 3. It starts with examining the embedded application outputs (of navigational 

algorithms) by comparing them with those performed on a desktop PC (Matlab models 

running on Pentium micro processor) platform using Matlab tool. Then it discusses the 

timing performance of the embedded navigational application. Finally, the chapter 

outlines the hardware utilization summary of the embedded software. 

4.1 Navigation Solution using MicroBlaze 

4.1.1 2D Mechanization 
Figure 4.1 and 4.2 show the position output comparison between Matlab model 

and MicroBlaze computation of 2D Mechanization for land vehicle experiment position 

results during 20s forced GPS outage. Figure 4.1 brings out the precision issue related to 

32-bit floating point representation. It shows that due to large dynamic range, a position 

increment of a moving automobile in every (1/75) second in east and north direction is 

too small to be added to a large latitude and longitude quantity respectively. 
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Figure 4.2: Longitude output comparison of 2D 

Mechanization. 

Moreover, in latitude and longitude calculation, the reference points are on 

Equator (zero latitude) and on Greenwich Meridian (zero longitude). The navigation 
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trajectory data [28] used was collected from road test conducted around Kingston city, 

Ontario, Canada and this location is far away from the Equator line and even further 

away from the Greenwich Meridian line. From figure 3.6 it can be said that during the 

forced GPS outage, the vehicle was heading towards North. Thus the change of position 

towards East-West direction at every (1/75) second was too little compared to the large 

distance from the Meridian Line. Adding a very large number to an extremely small one 

produces no significant change in computation as evident in figure 4.2. In contrast, in 

figure 4.1, even though there is an accumulated error growth, at least, the effect of the 

addition computation is visible. 

Starting experiments in a new embedded platform with the simplest algorithm 

such as 2D Mechanization thus proved helpful to get introduced to a precision related 

issue in navigation solution computation. To overcome this situation, a localized 

reference point (resulting a smaller distance) was used that can be easily added to the 

smallest possible east and north position increments calculated. 

4.1.2 Mechanization and Kalman filter 
Velocity East Velocity North 

-4UL— - ' ' l - - : /fc>l- l — L L - -- J 

3500 3505 3510 3515 3520 3500 3505 3510 3515 3520 
time (s) time (s) 

Figure 4.3: Velocity East (V) output of 2D, 3D Figure 4.4: Velocity North (V") output of 2D, 3D 
Mechanization and KF. Mechanization and KF. 

Figures 4.3 and 4.4 show the velocity output plots of the 2D, 3D Mechanization 

and KF code running on MicroBlaze platform. The improvement of the performance 

(with respect to the reference GPS output) of 3D Mechanization over 2D Mechanization 

and that of KF over 3D Mechanization is evident. 
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Figure 4.5 and 4.6 demonstrates the performance of the KF in position domain 

with respect to the reference GPS (during the forced GPS outage). Position Error Plot as 

a function of time in North and East direction show the error growth as the time 

progresses. From these two position error plots, it can be deduced that (for this specific 

forced GPS outage) the total horizontal error is approximately 30 m 

(Vl4.81682+28.05882 = 31.73061) 

Error Plot - GPS reference vs. MicroBlaze KF output Error Plot - GPS reference vs. MicroBlaze KF output 
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Figure 4.5: MicroBlaze output: Position North 
Error (in meter) with respect to GPS reference. 

3510 3515 3520 
time (s) 

Figure 4.6: MicroBlaze output: Position East Error 
(in meter) with respect to GPS reference. 

Figures 4.7 and 4.8 show the error plots between the computations carried out in 

Matlab Model and MicroBlaze. The reasons for the differences of the outputs can be 

described as follows. 

In MicroBlaze platform, the computation was carried out in single precision (32-

bit) floating point format compared to double precision (64-bit) floating point format 

used in Matlab which was running on desktop PC. In Matlab model, computing INS 

error equations in KF require absolute latitude (resulting from 3D Mechanization 

computation) values at every time instance. However, computation carried out in 32-bit 

platform cannot support the dynamic range of adding a very small latitude update (in 

every 1/75 second) to a very large initial latitude value (as described previously and 

shown in figures 4.1 and 4.2). To circumvent this scenario, the (absolute) latitude update 

in radian was carried out in every one second instead of every 1/75 second so that the 
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update value accumulates to a sufficiently large value enabling it to support the dynamic 

range of single precision floating computation. This different update method influences 

the Earth's radius (equation (2.2) and equation (2.3)) and gravity update (shown in 

equation (2.4)) computations. 

Error Plot - Matlab Model vs. MicroBlaze Output 
0.2. 

Error Plot - Matlab Model vs. MicroBlaze Output 
0.012, 

3510 3515 3520 
time (s) 

Figure 4.7: MicroBlaze vs. Matlab model output 
comparison - Position North Error (in meter) 

3510 3515 3520 
time (s) 

Figure 4.8: MicroBlaze vs. Matlab model output 
comparison - Position East Error (in meter) 

Figure 4.7 and figure 4.8 show the overall position error/difference derived 

between Matlab outputs and MicroBlaze results is negligible as the overall error value 

here is 3.8 cm (Vo.01022 +0.19572 = 0.0384). 

4.1.3 Wavelet De-noising 

From examining the de-noised time domain plots (in figure 4.10 and figure 4.14) 

and PSD plot (figure 4.11) of de-noised signal, the de-noising effect of the algorithm 

implemented on MicroBlaze (even though there is no error free reference of IMU data) 

becomes apparent. In the above figure 4.9 and figure 4.10 and in the PSD plot of figure 

4.11, only the data corresponding to Y-axis accelerometer is shown for the period of 

forced outage period of the trajectory (from 3500 second to 3520 second). This is 

because, being the sensor which detects the forward motion of the vehicle, the Y-axis 

accelerometer would provide data that is generally representative of the vehicle's overall 

motion dynamics. 
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Figure 4.9: Raw time domain signal of 7-axis 

accelerometer. 
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Figure 4.10: Wavelet De-noised time domain 

signal of y-axis accelerometer. 

By examining the PSD plot of figure 4.11, it can be said that Wavelet De-noising 

on Y accelerometer data carried out on MicroBlaze SCP is not only able to attenuate 

short-term errors existing beyond 2Hz, but it can also reject part of the long term errors 

present in the spectrum below it. 
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Figure 4.11: PSD of y-accelerometer data using Wavelet De-noising. 

The error plot of figure 4.12 clearly proves that Wavelet De-noising algorithm on 

low cost IMU data with high sampling rate (75 Hz in this case) can be successfully 

implemented on MicroBlaze SCP using its floating point hardware unit. 
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Figure 4.12: Error Plot - comparison between wavelet de-noised data outputs from Matlab and 
MicroBlaze 

Figure 4.10 and figure 4.14 shows the visual effect of lowering the LOD of 

wavelet de-noising algorithm from 5 to 3. 
IMU raw data signal 

-0.6, 

-0.7; 

-0.8 

^ -0 9 
6 
3 - i ! 

-1.1 

-1.2 

-1.3!— 

— t 

i 

- • • • ! 

i * 1 1 

T "" i 

1 

-0.8 

-0.85 

-0.9 

-0.95 

-1 

-1.05 

-1.1 

-1.15 

wal let de-noised signal 

- 1 . 2 L ' ' ' - - - i 1 1 
3490 3495 3500 3505 3510 3515 351 3490 3495 3500 3505 3510 3515 35! 

Time(s) Time(s) 
Figure 4.13: Raw time domain signal of Z-axis Figure 4.14: Wavelet De-noised time domain 

accelerometer. signal of Z-axis accelerometer. 

4.2 Timing Measurements 

Three different MicroBlaze configurations (using the BSB wizard of EDK tool) 

were implemented as the target of a software navigation application. In configuration 1, 
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the code executed entirely from the external SRAM. In configuration 2, 4KiB of 

Instruction cache and 8KiB of Data cache were enabled. In configuration 3, the entire 

application code ran from on chip BRAM of size 64 KiB. As the Spartan-3 Starter Board 

had only 24KiB of BRAM, the XUP Virtex-II Pro Board was used for configuration 3. 

Contrary to configurations 1 and 2 (both operated at the clock speed of 50MHz), 

configuration 3 operated at the clock speed of 100 MHz. In all three configurations, the 

stack/heap section of the code was kept at the BRAM section (along with the bootloop 

code for MicroBlaze). 

The number of clock cycles taken/needed to execute the C code of following 4 

algorithms (for a single iteration) is shown below. In contrast to the 2D and 3D 

Mechanization algorithms, both KF and matrix inversion algorithm uses loop operations 

intensively and it suits cache operation well (as it is shown in table 4.1). 

Table 4.1: Timing results for 2D, 3D Mechanization and KF operation. 

2D Mechanization 
3D Mechanization 
Decentralized KF 
(6x6 matrix inversion) 

Configuration 1 
(clock cycles) 

1772 
51937 

1843305 
(50940) 

Configuration 2 
(clock cycles) 

1732 
37646 

619191 
(12232) 

Configuration 3 
(clock cycles) 

390 
9471 

420236 
(11021) 

It should be noted that the entry corresponding to 2D Mechanization 

implemented via Configuration 3 in Table 4.1 is italicized. The italicization highlights 

the fact that the code for 2D Mechanization could be run from 16KiB BRAM available 

on Spartan-3 Starter Board (i.e. there was no need to use the external IMiB SRAM). In 

order to accommodate this code within this small memory limit, the calculations 

involving updating of Earth's Radii shown in equations (2.2) and (2.3) and gravity 

shown in equation (2.4) were omitted. Rather, these variables were assumed to be 

constant during this forced GPS outage period of 20 seconds. This assumption was 

extended to the 2D Mechanization performed by the other configurations to ensure that 

the timing output of all three configurations remain can be compared to each other. On 

the other hand, in the cases of 3D Mechanization and Decentralized KF, the 
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abovementioned variables i.e. Earth's radii and gravity were updated at the sampling 

frequency for the purpose of reporting timing performance of table 4.1. 

The benefit of using Instruction and Data cache for external SRAM (which is 

connected through OPB bus of MicroBlaze) is clearly evident from table 4.1 and table 

4.2. Configuration 1 can support up to IMU data rate 27 Hz (1843305 clock cycles) 

which is not fast enough to match the data rate of most of the MEMS based IMU sensors 

available in the market. By enabling the OPB cache option, up to 80 Hz (619191 clock 

cycles) data rate can be supported. By adding extra BRAM to the FPGA chip of Spartan-

3 Starter board, the code can support up to 119 Hz data rate. Here, the application code 

in configuration 3 can support (119x2 = 238 Hz) as the clock frequency used for 

MicroBlaze SCP was 100 MHz.. 

Table 4.2: Timing results of Wavelet De-noising carried on 75 samples of IMU sensor data. 
Level of de-composition 
and reconstruction plus 
adaptive thresholding 

3 

5 

Configuration 1 

clock cycles 

922296 

1228636 

ms 

18.4459 

24.5727 

Configuration 2 

Clock cycles 

199075 

273555 

ms 

3.9815 

5.4711 

Configuration 3 

clock cycles 

147829 

196361 

ms 

1.4783 

1.9636 

Table 4.2 shows that the wavelet de-noising algorithm execution time is in the 

order of millisecond i.e. less than 6 ms while OPB SRAM cache enabled. As the 

algorithm operates in real time using non-overlapping window mode, this execution 

latency is negligible compared to the delay associated with the IMU data buffering i.e. 

waiting for arrival for appropriate data to construct the non-overlapping window. By 

using cache, the execution latency of wavelet de-noising in real-time (by using non-

overlapping window length of 75 in this case) was speeded up almost 5 times as shown 

in the table 4.2. The nature of the most low-cost IMU raw data pre-processing 

algorithms (wavelet de-noising, FOS etc.) involves intensive use of loops and this usage 

suits cache operation well. In the worst case scenario, even if there was a cache miss at 

the beginning of the loop, the subsequent loop operations are executed as if the code was 

running from high-speed BRAM. 
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4.3 Hardware Device Utilization Summary 

Table 4.3 provides the device utilization summary and table 4.4 represents the 

post synthesis clock frequency of the critical modules for the three different hardware 

platform configurations (the same three different platforms shown in table 4.1 and table 

4.2 for timing analysis purpose) used in the implementation. The data of the tables 4.3 

and 4.4 are collected from the design report generated by the EDK tool for each 

hardware design. As a side note, it should be observed that choosing FPU leads to 

twofold increase (non-FPU version uses 950 logic cells while the current one employs at 

least 1616 logic cells) in the usage of logic cells. This observation can act as a 

motivation behind exploring future implementations which excludes the FPU. 

Table 4.3: Hardware resources used by major IPs 

Configuration 1 Configuration 2 Configuration 3 

Microblaze 32 bit soft processor (version: 4.00a) 

Slices 

Slice Flip Flops 

4 input LUTs 

BRAMs 

MUL18X18s 

1628(84%) 

1335(34%) 

2519(65%) 

N/A 

7 (58%) 

1717(89%) 

1343(34%) 

2721 (70%) 

8 (66%) 

7(58%) 

1616(11%) 

1332(4%) 

2382 (8%) 

N/A 

7 (5%) 

Memory: Block RAM (BRAM) Block 

BRAMs 8 (66%) 4 (33%) 32 (23%) 

On-chip Peripheral Bus (OPB) 2.0 with OPB Arbiter 

Slices 141 (7%) 141 (7%) 98 (-0%) 

RS-232 OPB UART (Lite) 

Slices 51 (2%) 51 (2%) 54 (-0%) 

SRAM_256Kx32 OPB External Memory Controller 

Slices 200(10%) 200 (10%) N/A 

Inspired by the successful IMU data pre-processing implementation in real-time 

hardware in reference [35] and its optimization in the hardware area, the feasibility of 

using fixed point calculation in implementing the wavelet de-noising algorithm for IMU 
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data was explored. By scaling the de-composition and reconstruction filter parameters 

and the IMU raw data by an optimal value (through tuning), a single level of de­

composition and reconstruction operation was carried out successfully. But as the LOD 

was increased to 3 and 5, an overflow was detected at the MicroBlaze output. The other 

obstacle in the scaling approach was the non-linearity introduced by the log function of 

wavelet thresholding (shown in equation 2.55). In short, due to unsatisfactory 

preliminary results, fixed point calculation scheme was replaced by the one using 

floating point. 

The total area utilized by IPs not included in table 4.3 (such as LMB BRAM 

Controller, OPB Microprocessor Debug Module etc.) constitute less than 5% of the area 

of the single major IP Microblaze 32 bit soft processor (version: 4.00a). 

Table 4.4: Post synthesis clock frequency for hardware configurations. 
Modules 

Microblaze 
OPB Interrupt 
Controller 
OPB Timebase 
WDT 
SRAM_256Kx32 
RS-232 

Configuration 1 
(MHz) 
83.19 
118.38 

122.62 

131.80 
149.86 

Configuration 2 
(MHz) 
63.29 
118.38 

122.62 

131.80 
149.86 

Configuration 3 
(MHz) 
130.88 
190.10 

197.93 

N/A 
209.47 

Table 4.4 shows the critical frequencies of the (some of the) corresponding IPs 

for three hardware configurations. The minor IPs such as SRAM_256Kx32 OPB 

External Memory Controller, RS-232 OPB UART (Lite) etc. runs much faster in each 

configuration than the single major IP MicroBlaze. Here, the clock on Spartan-3 Starter 

board and XUP Virtex-II Pro Board was configured to 50 MHz and 100 MHz 

respectively. Thus, application code running on prototyped MicroBlaze SCP would 

perform faster if the digital clock configured properly with the critical clock frequency 

value. In other words, there is thus an interesting processing margin available for further 

algorithmic enhancements. 

Table 4.4 shows that, even though the application code run faster (shown in table 

4.1 and table 4.2) on configuration 2 due to enabling OPB data and instruction cache in 
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comparison with configuration 1 (no cache), the critical clock frequency for the 

MicroBlaze core without the cache option (configuration 1) is higher. Not shown in 

table 4.4, the critical frequency for a MicroBlaze configuration without using external 

SRAM (on Spartan-3 Starter board) is found to be 83.19 MHz as well. Thus the critical 

frequencies for the MicroBlaze hardware configurations built Spartan-3 on Starter board 

had an enhancement of 66%, 26% and 66% for configuration 1, configuration 2 and for 

a similar of configuration 3 (built on Spartan-3 FPGA using only BRAM) respectively. 
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CHAPTER 5: Conclusion and Further Work 

5.1 Summary of Contribution 

From the work carried out in the thesis work (research, implementation) and with 

the navigational results and timing performances shown in chapter 4, the following 

developments can be considered as contribution of this thesis. 

5.1.1 Development of navigational algorithms 

Extensive research has been carried out with the aim of understanding some of 

the existing navigational algorithms related to GPS/INS integrated automobile 

navigational solution and to preprocess low-cost raw IMU data. This knowledge, found 

to be scattered in numerous contributions in the literature about this field, has been 

collated in an organized manner in Chapter 2 of the thesis. Applying the acquired 

knowledge, a closed loop decentralized KF filter model was built through 15-state INS 

error equations. Subsequently, by tuning the parameters appropriately, the model was 

validated successfully for a specific forced GPS outage lasting 20 seconds of an 

automobile. Additionally, an algorithm implementing Wavelet De-noising for 

preprocessing low-cost IMU data developed both in Matlab and C. 

5.1.2 Porting to the Embedded Platform 

The software implementation in C of navigational algorithms was successfully 

ported to the low cost MicroBlaze soft processor. The validated outputs, characterized 

by plots showing the resulting errors, are shown in figures 4.7, 4.8 and 4.12. The 

validation shows that a purely software implementation on a single precision embedded 

platform can produce acceptable results relative to the results obtained from a desktop 

PC platform that uses double precision floating point numbers. 

In other words, as demonstrated by figures 4.5 and 4.6, this thesis introduced, a 

low cost embedded implementation of a navigational computing unit (NCU) - capable 

of providing satisfactory navigational solution for a very short GPS outage (lasting up to 
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20 seconds). The associated wavelet de-noised (applied on raw data and resulted from 

MicroBlaze) IMU sensor data are shown in figures 4.10, 4.1 land 4.14. 

5.1.3 Real-time solution 

The number of clock cycles required for executing navigational algorithms on 

MicroBlaze platform was measured in order to validate the real-time requirement of the 

implementation as shown in table 4.1 and table 4.2. To improve timing criteria with the 

aim of meeting a sampling rate up to 119 Hz (not including the speedup resulting from 

increasing the clock frequency to critical value), the necessity of running the software 

application code (for MicroBlaze) from high speed Block RAM of the FPGA is 

highlighted for faster execution. 

5.1.4 A reference for future developers 

MicroBlaze processor core was used successfully as it provides the flexibility of 

using arbitrary algorithms to be coded in higher level programming language like C, 

thereby avoiding the need of using other HDL extensively. In this way, the usage of 

MicroBlaze reduces the development time and complexity to a great extent compared to 

the case of purely hardware implementation. Thus, by employing the combination of a 

low cost embedded platform, a flexible development approach and a real-time solution 

by running the code from BRAM, the implementation shown in this thesis work proves 

that synthesizing a completely functional low-cost, real-time navigation solution is 

feasible. 

In the development of the KF model, a considerable amount of time and effort 

was devoted to make it functional for any random GPS outage on the given trajectory as 

shown in figure 3.7 and to extend the positive effect of wavelet de-noising in real-time 

mode on KF output to produce navigational solution domain (i.e. improved position, 

velocity and heading solution). Due to the lack of direct access to the collection of real­

time sensor data (as GPS and INS sensor data was only available in an ASCII file 

format.), details related to INS and GPS hardware sensor data issues viz. data acquisition 

format, sensor setup, initial alignment, detailed sensor error characteristics and error 
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variance values, synchronization between IMU sensors and GPS, time accuracy and 

precision of the sensors outputs etc. could not be addressed in this thesis. 

With a view to commercialize the end product of the proposed implementation 

i.e. a low cost integrated GPS/INS embedded navigational system capable of 

successfully bridging short-term GPS outages in the market, a team comprising of 

software and hardware developers and experts in vehicle dynamics and GPS/ENS sensor 

equipments are required. Provided such a team can be coordinated, this thesis can be 

considered as an ambitious introductory step toward that final implementation. 

5.2 Recommendations 

A significant insight was gained throughout the work on this thesis. This section 

mentions some aspects or observations that were acquired during the process. In other 

words, important topics that were found essential for implementing a low-cost complete 

automobile navigational solution to be marketed (capable of bridging the GPS outages) 

but fell outside the scope of this thesis are proposed as recommendations for future work 

with the aim of completing an embedded product capable of providing navigation 

solution using GPS and IMU sensors. 

5.2.1 Observation #1 

Detection of either GPS signal outages or deteriorated performance of GPS is a 

complex procedure. In this thesis, GPS signal data is assumed to be capable of providing 

accurate navigational solution (position and velocity solution). Additionally, intentional 

forced outages were introduced. In practice, GPS signal degrades gradually. For this 

reason, GPS signal outage detection module can be considered as an essential step 

towards a complete GPS/ENS integration module implementation. As discussed in 

chapter 2 of the thesis, GPS fails to provide accurate navigational solution for two 

reasons. Firstly, there is a possibility of GPS outage due to the loss or blockage of the 

line of sight between the GPS receiver antenna and the GPS satellites. Secondly, GPS 

data becomes erroneous mostly due to multipath and cycle slip error. Apart from 

complete GPS outage/blockage scenario, data fusion through KF technique with 
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erroneous GPS data may not only lead to a significant degrading and/or confusing 

navigation solution but also cause a divergence in KF [2]. 

A decentralized KF architecture module capable of detecting cycle slip is shown 

in reference [36]. Multipath interference producing unreliable GPS solution detection 

module that can notify a GPS outage is recommended which will maintain the GPS 

solution integrity. Most present day off-the shelf GPS receivers are not equipped with 

algorithms that can detect this interference and notify a GPS outage to the user. Methods 

to reduce the interference effects in GPS receiver hardware are the research topics that 

are recommended for developments as well to enhance the GPS solution permanence. In 

this way, accurate detection of real-life GPS outages scenario will pave the way for the 

implementation of a complete integrated GPS/INS system capable of providing better 

navigational solution. 

Another significant step towards a final embedded navigation solution that needs 

to be undertaken is the interfacing with the digital map matching module (related to the 

research filed of GIS) shown in figure 3.4 and 3.5. 

5.2.2 Observation #2 

For real-time navigational solution, this thesis has adopted a purely software 

design implementation (as it provides flexibility in development) on MicroBlaze SCP. 

Results obtained from timing analysis and software profiling suggests the 

implementation of the time-intensive portion of the code/module in hardware directly for 

better performance. Therefore, adopting the software/hardware co-design technique 

through low latency MicroBlaze FSL (Fast Simplex Link) interface or through OPB 

(On-chip Peripheral Bus) interface will enhance performance. In this regard, the 

following modules are recommended to be implemented (for solution speed 

up/acceleration) on hardware directly: 

a) To handle input/output operations, a modified hardware UART controller with 

customized (optimized for navigational application) buffer size. 

b) To invert Matrix while implementing the KF algorithm. 
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c) To pre-process/de-noise IMU data module using FOS algorithm as its 

significant superiority over wavelet de-noising algorithm in real-time mode suggested in 

the reference [35]. 
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Figure 5.1: Illustration of Hardware-Software co-design on FPGA. 

Critical portions of the software code can be executed faster by using multiple 

MicroBlaze SCPs connected to each other through FSL interface. As they are integrated 

with co-processing capability, both pre-processing/de-nosing IMU sensor data unit and 

KF can be implemented in two different processors. It would be worthy to measure and 

analyze the processing speed-up/acceleration as opposed to the purely implementation 

method illustrated in this thesis. Finally, the issue of lowering the power consumption of 

the embedded solution might be researched. 
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