
Titre:
Title:

A design methodology for the implementation of embedded vehicle
navigation systems

Auteur:
Author:

Azizul Islam

Date: 2008

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Islam, A. (2008). A design methodology for the implementation of embedded
vehicle navigation systems [Mémoire de maîtrise, École Polytechnique de
Montréal]. PolyPublie. https://publications.polymtl.ca/8341/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8341/

Directeurs de
recherche:

Advisors:
J. M. Pierre Langlois

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8341/
https://publications.polymtl.ca/8341/

UNIVERSITE DE MONTREAL

A DESIGN METHODOLOGY FOR THE

IMPLEMENTATION OF EMBEDDED VEHICLE

NAVIGATION SYSTEMS

AZIZUL ISLAM

DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION

DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES

(GENIE INFORMATIQUE)

AOUT 2008

© Azizul Islam, 2008.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46057-3
Our file Notre reference
ISBN: 978-0-494-46057-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce memoire intitule:

A DESIGN METHODOLOGY FOR THE IMPLEMENTATION OF EMBEDDED

VEHICLE NAVIGATION SYSTEM

presente par : ISLAM Azizul

en vue de l'obtention du diplome de : Maitrise es sciences appliquees

a ete dument accepte par le jury d'examen constitue de :

M. FERNANDEZ Jose M.. Ph.D., president

M. LANGLOIS J. M. Pierre. Ph.D., membre et directeur de recherche

M. BOYER Francois-Raymond, Ph.D., membre

iv

To my parents...

V

Acknowledgement
I am grateful for the support and assistance that I received from my research

supervisor Dr. Pierre Langlois, throughout the course of my time as a MScA candidate

at the Computer Engineering Department of Ecole Polytechnique de Montreal. I would

like to thank him for his valuable insights, guidance, financial support and last but the

most for his patience.

I would like to thank also Dr. Aboulmagd Noureldin and his "Navigation and

Instrumentation" research group at Royal Military College, Kingston for providing the

experimental GPS and TG600 tactical-grade IMU trajectory data and an existing Matlab

code of 3D ENS mechanization.

I have benefited from the stimulating discussions and the support given in many

ways by several members of the Computer Engineering Department. I extend my

gratitude to Dr. Mathieu Briere, Mr. Jerome Collin, graduate students Bruno Girodias,

Nasreddine Hireche, Stephane Tchoulack, Anka Stoykova, Gerard Bouyela and many

others that I am not mentioning.

I would like to thank my mentor and teacher Ahmad El-Behery and my friend

Mustafa Momen for helping me get through the difficult times, for all the emotional

support and caring they provided. I wish to thank my relatives for providing their

support. My brother, cousins, aunts and uncles were particularly supportive. Lastly, and

most importantly, I wish to thank my parents. This paper would not have been possible

without them in any ways and no words can express my gratitude towards them.

VI

Abstract
Over the years, due to the increasing road density and intensive road traffic, the

need for automobile navigation has increased not just for providing location awareness

but also for enhancing vehicular control, safety and overall performance. The declining

cost of Global Positioning System (GPS) receivers has rendered them attractive for

automobile navigation applications. GPS provides position and velocity information to

automobile users. As a result, most of the present civilian automobile navigation devices

are based on GPS technology. However, in the event of GPS signal loss, blockage by

foliage, concrete overpasses, dense urban developments viz. tall buildings or tunnels and

attenuation, these devices fail to perform accurately. An alternative to GPS that can be

used in automobile navigation is an Inertial Navigation System (INS). INS is a self-

contained system that is not affected by external disturbances. It comprises inertial

sensors such as three gyroscopes and three accelerometers. Although low-grade, low-

cost INS performance deteriorates in the long run as they suffer from accumulated

errors, they can provide adequate navigational solution for short periods of time. An

integrated GPS/INS system therefore has the potential to provide better positional

information over short and long intervals.

The main objective of this research was to implement a real-time navigation

system solution on a low cost embedded platform so that it can be used as a design

framework and reference for similar embedded applications. An integrated GPS/INS

system with closed loop decentralized Kalman filtering technique is designed using

trajectory data from low-cost GPS, accelerometer and gyroscope sensors. A data pre­

processing technique based on a wavelet de-noising algorithm is implemented. It uses up

to five levels of de-composition and reconstruction with non-linear thresholding on each

level. The design is described in software which consists of an embedded

microprocessor namely MicroBlaze that manages the control process and executes the

algorithm.

In order to develop an efficient implementation, floating-point computations are

carried out using the floating point unit (FPU) of MicroBlaze soft core processor. The

VII

system is implemented on a Xilinx Spartan-3 Field Programmable Gate Array (FPGA)

containing 200 thousands gates clocked by an onboard oscillator operating at 50 MHz,

with an external asynchronous SRAM memory of 1 MiB. The system also includes the

IBM CoreConnect On-Chip Peripheral Bus (OPB). As such the final solution for vehicle

navigation system is expected to have features like low power consumption, light

weight, real-time processing capability and small chip area. From a development point

of view, the combination of the standard C programming language and a soft processor

running on an FPGA gives the user a powerful yet flexible platform for any application

prototyping.

Results show that a purely software implementation of the decentralized closed

loop Kalman filter algorithm embedded platform that uses single precision floating point

numbers can produce acceptable results relative to those obtained from a desktop PC

platform that uses double precision floating point numbers. At first, the Kalman filter

code is executed from a 1 MiB external SRAM supported by 8KiB of data cache and

4KiB of instruction cache. Then, the same code is run from high speed 64KiB on-chip

Block RAM. In the two memory configurations, the maximum sampling frequencies at

which the code can be executed are 80 Hz (period of 12.5 ms) and 119 Hz (period of 8.4

ms) respectively, while accelerometer and gyroscope sensors provide data at 75 Hz. The

same two memory configurations are employed in executing a wavelet de-noising

algorithm with 5 levels of de-composition, reconstruction and non linear thresholding on

each level. Accelerometer and gyroscope raw data are processed in real-time using non-

overlapping windows of 75 samples. The execution latencies in the two cases are found

to be 5.47 ms and 1.96 ms respectively. Additionally, from the post synthesis timing

analyses, the critical frequencies for the two hardware configurations were 63.3 MHz

and 83.2 MHz, an enhancement of 26% and 66% respectively. Since the system operates

at 50 MHz, there is thus an interesting processing margin available for further

algorithmic enhancements.

Thus, by employing the combination of a low cost embedded platform, a flexible

development approach and a real-time solution, the implementation shown in this thesis

viii

demonstrates that synthesizing a completely functional low-cost, outage-resilient, real­

time navigation solution for automotive applications is feasible.

Keywords: FPGA, MicroBlaze, INS, mechanization, wavelet de-noising, automobile

navigation, Kalman filtering.

IX

Resume
Au fil des annees, en raison de 1'augmentation de la densite routiere et l'intensite

de la circulation, un systeme de navigation automobile devient necessaire. Ce systeme

doit fournir non seulement l'emplacement du vehicule mais, surtout, augmentera le

controle, la securite et la performance globale de l'automobile. La baisse du cout des

recepteurs de Geo-Positionnement par Satellite (GPS) a vulgarise leur utilisation dans la

navigation automobile. Le systeme GPS fournit les donnees de positionnement ainsi que

l'information qui concerne la vitesse aux conducteurs. De ce fait, la plupart des

dispositifs de navigation des automobiles civiles sont actuellement bases sur la

technologie GPS. Cependant, en cas de perte du signal GPS par blocage par feuillage,

passages en beton, dense agglomeration urbaine, grands immeubles, tunnels et dans le

cas d'attenuation, ces dispositifs ne parviennent pas a fonctionner avec precision. Une

solution alternative au GPS, qui peut etre utilisee dans la navigation automobile, est le

systeme de navigation inertielle (INS). LTNS est un systeme autonome qui n'est pas

affecte par des perturbations externes. II comprend des capteurs inertiels comme trois

gyroscopes et trois accelerometres. Le cout des INS peut etre faible mais leur

performance se deteriore a long terme car ils souffrent des erreurs accumulees.

Cependant, il peut fournir des solutions precises sur de courts intervalles de temps. Un

systeme integre de GPS/INS a faible cout a done le potentiel de fournir de meilleures

informations de position pendant des intervalles courts et longs.

L'objectif principal de cette recherche etait de mettre en place une solution d'un

systeme de navigation vehiculaire temps reel sur une plateforme embarquee a faible

cout. Ceci avait pour but de pouvoir l'utiliser comme un cadre de conception, et comme

reference pour d'autres applications embarquees similaires. Pour ameliorer la solution de

navigation meme en cas d'arret de fonctionnement du GPS, les donnees du systeme

GPS/INS ont ete fusionnees par la technique de la boucle fermee du filtrage de Kalman

decentralise en utilisant 15 equations d'etats d'erreurs d'INS. En raison de l'utilisation

d'accelerometre a faible cout, ainsi que des capteurs gyroscopiques de donnees, une

technique de pretraitement nommee algorithme de debruitage par ondelettes a ete

X

adoptee. L'algorithme a un maximum de 5 niveaux de decomposition, de reconstruction,

ainsi que du seuillage non lineaire a chaque niveau. La conception est decrite par un

logiciel qui comprend un microprocesseur embarque. L'implementation est effectuee a

l'aide d'un cceur du processeur MicroBlaze qui gere le processus de controle et execute

l'algorithme.

Afin de developper une implementation efficace, des calculs en virgule flottante

sont effectues en utilisant 1'unite de virgule flottante (FPU) du coeur du processeur

Microblaze. Le systeme est implemented sur carte FPGA Spartan-3 de Xilinx. Elle

contient 200 mille portes logiques cadencees par un oscillateur a 50 MHz, avec une

memoire externe asynchrone SRAM de 1 Mio. Le systeme comprend egalement un bus

peripherique sur puce (OPB). A ce titre, la solution finale du systeme de navigation

automobile devrait avoir des caracteristiques telles qu'une faible consommation de

puissance, un poids leger, une capacite de traitement en temps reel ainsi qu'un petit

espace occupe sur puce. D'un point de vue developpement, l'utilisation du langage C et

d'un coeur de processeur fonctionnant sur FPGA donne a l'utilisateur une plateforme

flexible pour tout prototypage d'applications.

Les simulations montrent qu'une implementation purement logicielle de

l'algorithme de la boucle fermee du filtrage de Kalman decentralise sur une plateforme

embarquee qui utilise les nombres virgule-flottante a simple precision, peut produire des

resultats acceptables. Ceci est conforme aux resultats obtenus sur une plateforme d'un

ordinateur de bureau qui utilise les nombres virgule-flottante a double precision. Dans

un premier temps, le code du filtrage de Kalman est execute a partir d'une memoire

externe SRAM de 1 Mio, soutenue par une memoire cache de donnees de 8Kio et une

cache d'instructions de 4 Kio. Puis, le meme code est lance a partir du bloc RAM sur

puce, a grande vitesse, de 64 Kio. Dans les deux configurations memoire, les frequences

d'echantillonnage maximales pour lesquelles le code peut etre execute sont de 80 Hz

(periode de 12,5 ms) et 119 Hz (periode de 8,4 ms), respectivement, tandis que les

capteurs fournissent les donnees a 75 Hz. Les meme deux configurations de memoire

sont employees dans l'execution de l'algorithme de debruitage par ondelettes avec 5

XI

niveaux de decomposition, de reconstruction et seuillage non lineaire a chaque niveau.

Sur l'accelerometre et le gyro, les donnees brutes sont fournies en temps reel en utilisant

un mode de fenetre de non-chevauchement, avec une longueur de fenetre de 75

echantillons. Les latences d'execution dans les deux cas sont 5,47 ms et 1,96 ms pour les

deux configurations de memoire precedemment citees, respectivement. En outre,

l'analyse temporelle de l'apres synthese des deux configurations materielles, reporte des

apports de 26% et 66% respectivement. Puisque le systeme fonctionne a 50 MHz, il y a

ainsi une marge de manoeuvre disponible interessante pour des perfectionnements

algorithmiques.

Ainsi, en utilisant la combinaison d'une plate-forme peu couteuse, une approche

flexible de developpement et une solution en temps reel, l'execution montree dans ce

memoire demontre que la synthese d'une solution finale de navigation vehiculaire

fonctionnant en temps reel, completement fonctionnelle, panne-resiliente, peu couteuse

est faisable.

Mots-cles: FPGA, Microblaze, INS, mecanisation, debruitage par ondelettes, navigation

automobile, filtrage de Kalman.

Xll

Condense en frangais
Les systemes de navigation ont toujours ete essentiels pour les vehicules aeriens

et marins. Au cours des dernieres annees, on a observe une augmentation importante de

la densite routiere et de l'intensite de la circulation. Les besoins en systemes de

navigation pour les automobiles ont done augmente considerablement pour la

localisation, la securite, le controle et la performance. La disponibilite d'une technologie

appropriee doit permette d'offrir un produit a prix modere comme systeme de navigation

automobile [1]. Ainsi, cette composante deviendra une partie integrate de l'industrie

automobile et un choix attrayant a prix raisonnable pour le consommateur.

Avec l'avancement de la technologie, la navigation automobile est devenue une

preoccupation de plus en plus pressante. En merae temps, la baisse du cout des

recepteurs de geo-positionnement par satellite (GPS) a generalise leur utilisation dans la

navigation automobile. Particulierement durant la derniere decennie, le prix des

receveurs GPS a ete rendu plus interessant pour les consommateurs. Ainsi le GPS est un

systeme de navigation precis pour determiner la position et la vitesse du vehicule [2].

Aujourd'hui la plupart des automobiles utilisent la technologie GPS. Cependant, dans le

cas de perte, de blocage et d'attenuation des signaux GPS, si ceux-ci ne fonctionnent pas

correctement, il en resulte alors une panne. Les pannes temporaires des signaux GPS

peuvent etre causees par les forets, les gratte-ciel, les agglomerations urbaines, les

tunnels etc. et done necessitent un systeme alternatif pour la navigation d'automobile

[3].

L'alternative au GPS, qui peut etre utilisee dans la navigation automobile, est le

systeme de navigation inertielle (INS). Aujourd'hui presque tous les systemes INS sont

constitues de deux parties : le mesureur inertiel (Inertial Measurement Unit - IMU) et

l'ordinateur de navigation. L'IMU comprend des capteurs inertiels, qui sont en general

trois gyroscopes et trois accelerometres montes orthogonalement dans un vehicule.

L'IMU detecte et mesure les accelerations eprouvees et les degres de changement de

direction dans le repere inertiel de la terre. L'ordinateur de navigation transforme ces

mesures en un point de repere de navigation. De cette maniere, TINS permet de calculer

Xll l

la position, la vitesse et la direction incremental du vehicule. Ainsi, en reunissant ces

valeurs incrementales de position, vitesse et direction avec les valeurs initiales, la

solution de navigation (position, vitesse et direction angulaire) peut etre determinee [4].

A l'inverse du GPS qui depend de l'aide de plusieurs satellites externe, TINS est

un systeme autosuffisant qui n'est pas affecte par l'environnement. II possede une

excellente performance a court terme. Toutefois, les capteurs accelerometres et les

capteurs gyroscope sont dispendieux, surtout pour les modeles tres performants. Les

IMUs les moins chers peuvent fournir une solution de navigation provisoire et il s'en

suit une accumulation d'erreurs et une performance inferieure [4].

Dans la plupart des cas, le probleme du GPS comme systeme de navigation

autonome peut etre surmonte pour une courte periode par un systeme integre GPS et

INS. Ainsi, l'idee principale est d'utiliser les deux systemes (GPS et INS) ensemble.

Dans ce systeme integre, on utilise normalement la solution fournie par GPS. En meme

temps, TINS continue a calculer la position, la vitesse et la direction. En presence d'une

panne de GPS, la solution est alors fournie par TINS. Ceci est la plus simple maniere

d'integrer les deux systemes.

Pour obtenir encore un meilleur resultat quand il y a une panne de GPS, on

utilise le filtrage de Kalman sur les donnees de GPS et d'INS. Le filtrage de Kalman

comprend un modele dynamique des erreurs de GPS et d'INS, un modele stochastique

des erreurs des capteurs et aussi des valeurs initiales des donnees reliees avec le systeme

GPS et INS. Durant une panne de GPS, le filtrage de Kalman prevoit les erreurs de

position, de vitesse et de direction d'INS. En corrigeant ces erreurs, la solution de

navigation est grandement amelioree [4].

A l'inverse du GPS, TINS est exempte du blocage des signaux. Mais quand le

GPS tombe en panne, la performance d'INS baisse progressivement s'il contient des

capteurs accelerometres et des capteurs gyroscopes de faible qualite. Plusieurs

techniques de debruitage ont ete proposees afin d'ameliorer les sorties des

accelerometres et gyroscopes dont le debruitage par ondelettes [5].

XIV

L'objectif general de cette recherche est de mettre en place une solution d'un

systeme de navigation vehiculaire temps reel sur une plateforme FPGA Spartan-3

utilisant le coeur de processeur MicroBlaze. Les objectifs specifiques de cette recherche

peuvent etre resumes comme suit:

Objectif 1: Implementer les algorithmes introduits dans la section 1.1 de ce

memoire utilisant le coeur de processeur Microblaze de Xilinx. Cette approche est

particulierement avantageuse au chapitre du cout.

Les capteurs GPS fournissent 3 positions et 3 vitesses directement. Par contre,

les capteurs IMUs (les capteurs accelerometres et gyroscopes) fournissent 3

accelerations et 3 vitesses angulaires par rapport au referentiel «Corps de l'automobile»

(body frame). Idealement, le systeme GPS/INS integre inclut les 3 etapes suivantes:

a) Debruitage de donnees brutes qui sont fournies par les capteurs IMUs.

b) Transformation 2D ou 3D («Mecanisation 2D» ou «Mecanisation 3D») qui

convertissent les accelerations lineaires et les taux de rotation du referentiel du vehicule

a celui de navigation dans le but d'obtenir les informations de position, vitesse et

direction.

c) Fusionnement du systeme GPS/INS par la technique de la boucle fermee et

decentralisee du filtrage de Kalman.

Ainsi, le but etait d'implementer un ordinateur de navigation (NCU) qui peut

executer les trois techniques mentionnees ci-dessus en utilisant les donnees fournies par

des capteurs accelerometres et gyroscopes. Plus particulierement, le but etait

d'implementer un ordinateur de navigation sur une plate-forme moins couteuse au lieu

d'un microprocesseur de bureau (qui coute plus cher) qui utilise les nombres virgule-

flottante a double precision.

Objectif 2: Fournir une analyse de resultat comparative (c.a.d. une solution de

navigation: position et vitesse) d'implementation de systeme GPS/INS integree entre les

plateformes «Embarquee» et «Microprocesseur». A cet egard, l'utilisation des

ressources de systeme embarque montre la simplicite de 1'application de navigation

d'automobile, de meme que son aspect contact en surface necessaire.

XV

Objectif 3: Fournir une solution de systeme GPS/INS integre de navigation en

temps reel pour ces types d'application specifiques.

Objectif 4: Presenter 1'implementation d'un systeme GPS/INS integre de telle

maniere qu'elle puisse etre employee comme un cadre generique pour 1'implementation

des algorithmes de navigation. Ce cadre integre la prise en charge de l'algorithme de

debruitage de donnees d'IMU. Ce dernier s'avere efficace malgre sa complexite

relativement a l'algorithme Fast Orthogonal Search (FOS) [5]. Cette technique de

debruitage spectral presente une haute resolution pour les donnees d'IMU sur

technologie MEMS. Aussi, ce cadre inclut egalement la technique d'integration de

GPS/INS pour resoudre des pannes de GPS avec une plus longue duree en utilisant la

methode par reseaux de neurones artificiels qui est en phase de recherche et

developpement [5] [6].

Pour ce projet de recherche, la carte Spartan-3 developpee par Digilent inc. a ete

principalement utilisee. Cette plate-forme de developpement inclut un FPGA Spartan-3

de Xilinx qui contient 200 mille portes logiques cadencees par un oscillateur a 50 MHz,

avec une memoire externe asynchrone SRAM de 1 Mio. Elle contient aussi une interface

UART (port serie), un port JTAG, un port VGA ainsi que plusieurs autres interfaces

(port PS/2, boutons, etc.) [22]. Elle peut done supporter des circuits de complexite

variee, ainsi que des processeurs embarques.

Dans une etape plus avancee de 1'implementation et pour rendre l'execution du

code plus rapide, la carte FPGA Xilinx University Program (XUP) Virtex-II Pro a ete

utilisee et elle comporte une quantite superieure de Block RAM. II s'agit d'une plate-

forme haute performance Virtex-II Pro FPGA entouree par un nombre de peripheriques.

Pour cette recherche, nous avons utilise specifiquement le port serie, le port JTAG et le

generateur d'horloge [23].

L'une des motivations pour utiliser un coeur de processeur logiciel est son faible

cout. En effet, un processeur MicroBlaze ne coute que $0.48 US. Par contre, les micro-

processeurs qu'on trouve habituellement dans les postes de travail coutent plusieurs

XVI

centaines de dollar. De plus, la plate-forme FPGA utilisee coute moins de $2.00 US, ce

qui en fait une solution abordable pour les applications de navigation automobile [26].

Le microcontroleur MicroBlaze est une solution integree toute designee pour

1'implementation d'un controleur embarque. Le coeur de processeur logiciel MicroBlaze

embarque est un processeur 32-bit suivant une architecture Harvard. L'architecture

Harvard separe physiquement la memoire de donnees et la memoire programme.

L'acces a chacune des deux memoires s'effectue via deux bus distincts. Le processeur

MicroBlaze suit aussi une architecture RISC optimisee pour implementation dans les

FPGA de Xilinx. Une fois implements, le processeur est programme sur la carte FPGA.

Le processeur MicroBlaze est aussi configurable. II permet aux utilisateurs de choisir

uniquement les fonctionnalites dont ils ont besoin [24].

Le «Wizard Base System Builder» (BSB), module de l'outil EDK, a ete utilise

pour construire le systeme materiel fonctionnel dedie pour la carte Spartan-3. Le BSB a

ete employe pour developper la plateforme matedelle dans le but de l'integrer au logiciel

de navigation developpe dans ce memoire. En remplacement d'un systeme

d'exploitation embarque tel que XilKernel ou ucLinux, une plateforme autonome a ete

retenu.

Le nombre de cycles necessaires a ete mesure en utilisant un compteur watch­

dog connecte avec le port de gestion des interruptions du MicroBlaze. Cette approche est

plus precise que celle du profilage du code utilisant l'outil GCC/GPROF d'EDK.

Plusieurs recherches ont ete conduites en vue de bien comprendre les algorithmes

existants relies au systeme GPS/INS et les traitements des donnees fournies par 1'IMU.

Le chapitre 2 de ce memoire synthetise l'etat de l'art dans ce domaine. L'etude des

connaissances a permis de retenir le model de filtrage de Kalman, base sur une boucle

fermee decentralisee. Ce modele se base sur une equation a 15 etats pour modeliser les

erreurs d'INS.

Le chapitre 3 presente le travail realise qui consistait a calibrer les parametres de

filtrage de Kalman dans le but de valider le modele pour un cas de simulation de panne

de GPS d'une dure de 20 seconds. En parallele, une implementation d'algorithmes de

xvn

debruitage par ondelettes a ete faite pour les donnees d'IMU. V implementation de ces

algorithmes a ete faite sur la plate-forme MicroBlaze.

Le chapitre 4 presente les resultats de 1'implementation embarquee decrite au

chapitre 3. II debute par l'examen des sorties d'application embarquee (des algorithmes

de navigation) en comparaison a ceux executes sur une plateforme d'ordinateur de

bureau a l'aide de l'outil Matlab. Ensuite, on y trouve une discussion des performances

temporelles des applications de navigation embarquee. Enfin, le chapitre resume

l'utilisation de materiel par les applications embarquees dans ce memoire.

Les figures 4.1 et 4.2 montrent la comparaison des sorties de la «Mecanisation

2D» de position d'une automobile pendant la panne de GPS forcee pendant une periode

de 20 secondes respectivement entre le modele de Matlab et celui du MicroBlaze. La

figure 4.2 illustre le probleme de precision lie a une representation 32 bits a virgule

flottante. Elle demontre que dans un intervalle etendu 1'increment de position de

l'automobile a chaque 1/75 seconde n'est pas suffisamment grand pour etre ajoute a une

grande quantite de latitude et de longitude.

D'ailleurs, dans le calcul de latitude et de longitude, les points de reference sont

sur l'equateur (latitude zero) et sur le meridien de Greenwich (longitude zero)

respectivement. Les donnees de trajectoire de navigation utilisees ont ete rassemblees de

l'essai sur route effectue autour de la ville de Kingston, Ontario, Canada [28]. Cet

endroit est loin de l'equateur et meme plus loin de la ligne de meridien de Greenwich.

La figure 3.6 montre que pendant la panne de GPS, le vehicule se dirigeait vers le nord.

Ainsi le changement de la position vers la direction est-ouest dans chaque 1/75 seconde

a ete trop peu compare a la grande distance de la ligne meridienne. En revanche, la

figure 4.1 montre une croissance accumulee des erreurs, et l'effet du calcul d'addition

est evident.

Les resultats de 1'experimentation sur la nouvelle plateforme embarquee avec un

algorithme simple tel que la mecanisation 2D sont concluants. Ces resultats nous ont

permis d'adresser le probleme lie a la precision dans le calcul des solutions de

navigation. Afin de surmonter ce probleme, un point local a ete retenu comme reference

XV111

dans le but de minimiser la distance de reference et de faciliter l'ajout d'increments les

plus petits possible.

Les figures 4.3 et 4.4 montrent les schemas des sorties de la «Mecanisation 2D»,

«Mecanisation 3D» et du filtrage de Kalman fonctionnant sur la plateforme MicroBlaze.

II reste evident que la performance des sorties relative au reference GPS de

«Mecanisation 3D» excede celle de «Mecanisation 2D» alors que le filtrage de Kalman

depasse celle de la «Mecanisation 3D».

En examinant le schema PSD de figure 4.11 (debruitage par ondelettes

fonctionnant sur le coeur de processeur MicroBlaze), on peut non seulement attenuer des

erreurs a court terme existant au dela de 2Hz, mais egalement rejeter une partie des

erreurs a long terme dans le spectre au-dessous d'elle.

Les figures 4.7, 4.8 et 4.12 montrent les sorties de MicroBlaze par rapport aux

resultats obtenus d'une modelisation Matlab a haut niveau. Les figures 4.5 et 4.6

illustrent 1'implementation dans des ordinateurs de navigation. Les figures 4.10, 4.11 et

4.14 montrent les resultats d'implementation de debruitage par ondelettes sur

MicroBlaze pour les donnees d'IMU.

Le temps d'execution du code sur MicroBlaze pour deux configurations de

memoires separees a ete mesure (voir tableaux 4.1 et 4.2). L'execution dans un bloc de

RAM s'avere plus rapide que celle sur la memoire externe de SRAM.

Le coeur de processeur logiciel MicroBlaze a ete utilise avec succes parce qu'il

offre la flexibilite d'implementer arbitrairement des algorithmes en utilisant un langage

de programmation de haut niveau tel que le langage C. Ceci permet d'eviter 1'utilisation

extensive d'autres langages de programmation de bas niveau comme HDL. Par

consequent, 1' usage du MicroBlaze reduit significativement la complexite et le temps de

developpement en comparaison avec d'autres approches.

Le chapitre 5 presente les conclusions de la methodologie d'implementation

presentee dans ce memoire. H fournit quelques recommandations dans le but d'une

utilisation comme cadre de conception pour les futures applications embarquees de

meme nature.

XIX

Ce travail a permis de demontrer qu'une implementation peu couteuse est

possible pour un systeme embarque de navigation automobile. Cette implementation, qui

utilise une approche flexible, fournit des sorties en temps reel.

Les travaux decrits dans ce memoire constituent un cadre structure pour le

developpement eventuel d'une solution complete et integree d'un produit commercial.

Plusieurs equipes de chercheurs travaillent au developpement d'algorithmes

d'integration INS/GPS et de modelisation d'erreur de 1'INS. La miniaturisation des

senseurs INS creera par ailleurs des opportunites grandissantes, permettant de passer de

la navigation vehiculaire a la navigation personnelle.

XX

Table of Contents

ACKNOWLEDGEMENT V

ABSTRACT VI

RESUME IX

CONDENSE EN FRANQAIS XII

TABLE OF CONTENTS XX

LIST OF FIGURES XXIV

LIST OF TABLES XXVI

LIST OF SYMBOLS XXVII

LIST OF ACRONYMS AND ABBREVIATIONS XXX

CHAPTER 1 : PROBLEM STATEMENT 1

1.1 Automobile Navigation 1

1.1.1 GPS Navigation 1

1.1.2 Inertial Navigation System 1

1.1.3 GPS/INS Integration 3

1.1.4 IMU Sensor De-noising 3

1.2 Research Focus 4

1.2.1 Objective 1 4

1.2.2 Objective 2 4

1.2.3 Objective 3 5

xxi

1.2.4 Objective 4 5

1.3 Thesis Outline 5

CHAPTER 2 : BACKGROUND ON VEHICULAR NAVIGATION 7

2.1 Global Positioning System 7

2.1.1 GPS Operation 8

2.1.2 Drawbacks of GPS 10

2.2 Navigation Frame 12

2.2.1 Inertial frame ((-frame) 12

2.2.2 Earth frame (e-frame) 12

2.2.3 Local level frame (/-frame) 13

2.2.4 Body frame (b-frame) 13

2.3 Earth Models 13

2.3.1 Ellipsoid Geometry 14

2.3.2 Ellipsoid Gravity 15

2.4 Attitude Representations 16

2.4.1 Direction Cosine Matrix 16

2.4.2 Euler Angles 17

2.4.3 Quaternion 17

2.4.4 Relationships between DCM, Euler Angles and Quaternion 18

2.5 Inertial Navigation System 19

2.5.1 Grades of IMU 20

2.5.2 Types of Inertial Navigation Systems 20

2.6 IMU Sensor Errors 21

2.6.1 IMU Calibration 22

2.6.2 IMU Alignment 23

2.7 2D INS Mechanization Equations 24

2.8 3D INS Mechanization Equations 26

2.8.1 Attitude Mechanization 27

xxii

2.8.2 Velocity Mechanization 28

2.8.3 Position Mechanization 29

2.9 INS Error Equations 31

2.9.1 Coordinate errors 33

2.9.2 Velocity errors 33

2.9.3 Attitude errors 33

2.9.4 Accelerometer bias errors 34

2.9.5 Gyroscope's drift errors 34

2.10 GPS/INS data fusion using KF 34

2.10.1 KF based GPS/INS Integration Schemes 35

2.10.2 KF Models for GPS/INS Integration 36

2.10.3 Limitations of KF 39

2.11 IMU data preprocessing using Wavelet De-noising 40

2.11.1 Signal De-composition and Reconstruction 41

2.11.2 Wavelet Coefficient Thresholding 43

2.12 Chapter Summary 44

CHAPTER 3 : IMPLEMENTATION METHODOLOGY... 46

3.1 Hardware/Equipment Setup 46

3.1.1 Development Boards 46

3.1.2 Serial Cable 48

3.1.3 Parallel Cable IV 48

3.1.4 Terminal Program 49

3.2 Embedded Platform 49

3.2.1 Development tool Xilinx EDK 49

3.2.2 MicroBlaze Soft Processor Core 50

3.2.3 MicroBlaze Processor peripherals 52

3.3 Hardware Platform Development 53

3.3.1 Building processor core.... 53

3.3.2 Measuring the timing performance 54

xxiii

3.4 Software Coding 55

3.4.1 Land Vehicle Navigation Data 58

3.4.2 2D Mechanization 59

3.4.3 3D Mechanization 59

3.4.4 Kalman filter 59

3.4.5 Wavelet De-noising 61

3.5 Software Design Issues 62

3.5.1 Data I/O 64

3.5.2 Run time errors 64

CHAPTER 4 : RESULTS AND DISCUSSION 66

4.1 Navigation Solution using MicroBlaze 66

4.1.1 2D Mechanization 66

4.1.2 Mechanization and Kalman filter 67

4.1.3 Wavelet De-noising 69

4.2 Timing Measurements 71

4.3 Hardware Device Utilization Summary 74

CHAPTER 5 : CONCLUSION AND FURTHER WORK 77

5.1 Summary of Contribution 77

5.1.1 Development of navigational algorithms 77

5.1.2 Porting to the Embedded Platform 77

5.1.3 Real-time solution 78

5.1.4 A reference for future developers 78

5.2 Recommendations 79

5.2.1 Observation #1 79

5.2.2 Observation #2 80

REFERENCES 82

XXIV

List of Figures
Figure 2.1: Space, Control and User segment of GPS 8

Figure 2.2: Illustration of Single Point Positioning using GPS 9

Figure 2.3: Inertial frame (j'-frame) 12

Figure 2.4: Earth frame (e-frame) 12

Figure 2.5: The local-level frame (/-frame) 13

Figure 2.6: The body frame (Wrame) 13

Figure 2.7: Illustration of eccentric (r), geocentric (ff) and geodetic latitude {(p) 14

Figure 2.8: Local Meridian plane of reference ellipsoid 15

Figure 2.9: Rotation of body frame by about the vertical axis 25

Figure 2.10: Block diagram illustrating 2D INS Mechanization 26

Figure 2.11: : De-composition of the Earth's rotation in local level frame 26

Figure 2.12: Change of local North and Vertical directions during motion over the

surface 26

Figure 2.13: Coriolis acceleration on rotating Earth 28

Figure 2.14: Local level ENU frame 28

Figure 2.15: Illustration of the change of latitude on the parallel plane and change of

longitude on meridian plane 30

Figure 2.16: Block diagram of the procedures of 3D Mechanization 31

Figure 2.17: Decentralized and closed loop GPS aided SINS KF architecture 35

Figure 2.18: Illustration of GPS/INS data sampling and KF (in prediction and update

mode) 39

Figure 2.19: Illustration of the three steps of Wavelet De-noising Procedure a) de­

composition, b) thresholding and c) reconstruction 41

Figure 3.1: A snapshot of the hardware/equipment setup for the implementation 46

Figure 3.2: Block diagram of S-3 Board (resources used have been shaded) 47

Figure 3.3: An illustration of the embedded platform used in this thesis work 51

Figure 3.4: Illustration of the measurement of clock cycles (te-tK) to execute a certain

portion of C code onMicroBlaze 55

XXV

Figure 3.5: Block diagram of current/existing Automobile Navigation Product in the

Market as portable in-car GPS device 57

Figure 3.6: Block Diagram of the Navigation solution implemented this thesis 57

Figure 3.7: Complete map of the trajectory while the black circled location is the IMU

sensor (during a simulated GPS outage) data used 58

Figure 4.1: Latitude output comparison of 2D Mechanization 66

Figure 4.2: Longitude output comparison of 2D Mechanization 66

Figure 4.3: Velocity East (V) output of 2D, 3D Mechanization and KF 67

Figure 4.4: Velocity North (V!) output of 2D, 3D Mechanization and KF 67

Figure 4.5: MicroBlaze output: Position North Error (in meter) with respect to GPS

reference 68

Figure 4.6: MicroBlaze output: Position East Error (in meter) with respect to GPS

reference 68

Figure 4.7: MicroBlaze vs. Matlab model output comparison - Position North Error (in

meter) 69

Figure 4.8: MicroBlaze vs. Matlab model output comparison - Position East Error (in

meter) 69

Figure 4.9: Raw time domain signal of F-axis accelerometer 70

Figure 4.10: Wavelet De-noised time domain signal of 7-axis accelerometer 70

Figure 4.11: PSD of 7-accelerometer data using Wavelet De-noising 70

Figure 4.12: Error Plot - comparison between wavelet de-noised data outputs from

Matlab and MicroBlaze 71

Figure 4.13: Raw time domain signal of Z-axis accelerometer 71

Figure 4.14: Wavelet De-noised time domain signal of Z-axis accelerometer 71

Figure 5.1: Illustration of Hardware-Software co-design on FPGA 81

XXVI

List of Tables
Table 2.1: Constant coefficient (unit in m/sec) for normal gravity 16

Table 2.2: Using six-position calibration technique, calculation of deterministic bias and

scale factor (of accelerometer and gyro sensors) 23

Table 2.3: Wavelet coefficient (hard and soft) thresholding equations 43

Table 3.1: Terminal program settings used for retrieving data from FPGA boards 49

Table 3.2: Bandwidth of True Motion Dynamics of IMU sensor data 62

Table 4.1: Timing results for 2D, 3D Mechanization and KF operation 72

Table 4.2: Timing results of Wavelet De-noising carried on 75 samples of IMU sensor

data 73

Table 4.3: Hardware resources used by major IPs 74

Table 4.4: Post synthesis clock frequency for hardware configurations 75

XXV11

List of Symbols
oix Vehicle platform rotation rate or gyroscope measurement about the X-axis of the

6-frame.

a>y Vehicle platform rotation rate or gyroscope measurement about the Y-axis of the

&-frame.

coz Vehicle platform rotation rate or gyroscope measurement about the Z-axis of the

Z?-frame.

fx Vehicle platform acceleration or accelerometer measurement about the X-axis of

the />frame./

fy Vehicle platform acceleration or accelerometer measurement about the Y-axis of

the fr-frame. x

fz Vehicle platform acceleration or accelerometer measurement about the Z-axis of

the b-frame.

y Vehicle platform acceleration or accelerometer measurement vector with respect

to the b-frame.

R[Transformation matrix from body frame to local level frame.

6 Vehicle platform pitch angle.

0 Vehicle platform roll angle.

y/ Vehicle platform azimuth angle.

V Vehicle platform velocity in East direction.

VI Vehicle platform velocity in North direction.

V" Vehicle platform velocity in Up direction.

(p Vehicle platform (geodetic) latitude position component.

T Eccentric Latitude

ff Geocentric Latitude

X Vehicle platform longitude position component.

h Vehicle platform altitude position component.

a2 Variance.

XXV111

Inverse of correlation time for Gauss-Markov process.

INS error state vector of KF

Kalman gain matrix of KF

Predicted or a priori estimate of error state vector of KF

Updated or a posteriori estimate of error state vector of KF

Design matrix of KF

Measurements vector of KF

State transition matrix of KF.

System noise distribution matrix of KF

Skew-symmetric matrix containing vehicle platform rotation measurements.

Skew-symmetric matrix containing effect of the Earth's rotation and change to

the local level frame orientation.

Skew-symmetric matrix containing effect of the Earth's rotation.

Skew-symmetric matrix containing effect of change to the /-frame orientation.

Acceleration due to gravity

Vehicle platform velocity vector expressed in the /-frame.

Vehicle platform position vector expressed in the /-frame.

covariance matrix of the measurement noise uS.

Error state covariance matrix.

Predicted or a priori estimate of error state covariance matrix.

Updated or a posteriori estimate of error state covariance matrix.

System noise covariance matrix.

Prime vertical radius of the best fitting Earth ellipsoid (East-West)

Corresponding meridian radius of curvature (North-South)

Sampling frequency

bits per second

degree

xxix

hr hour

m meter

km/hr kilometer per hour

m/s meter per second

rad radian

s second

XXX

List of Acronyms and Abbreviations
ANI Advanced Navigation and Instrumentation Research Group of Royal

Military College

BRAM Block Random Access Memory

&-frame body frame

DCM Direction Cosine Matrix

DGPS Differential Global Positioning System

DWT Discrete Wavelet Transform

EDK Embedded Development Kit

EMC External Memory Controller

FFT Fast Fourier Transform

FOS Fast Orthogonal Search

FPGA Field Programmable Gate Array

GHz Giga Hertz

GNU GNU is Not Unix

GPS Global Positioning System

GUI Graphical User Interface

Gyro Gyroscope

HDL Hardware Description Language

IMU Inertial Measurement Unit

INS Inertial Navigation System(s)

I/O Input/Output

IP Intellectual Property cores

JTAG Joint Test Action Group

KF Kalman Filter/Filtering

/-frame local level frame

LOD Level of De-composition

LMB Local Memory Bus

LPF Low Pass Filter

xxxi

MBit/s

MHz

NCU

OPB

OS

PSD

RAM

RISC

ROM

RS-232

RTOS

SRAM

UART

WMRA

SCP

Mega Bit per second

Mega Hertz

Navigational Computing Unit

On-Chip Peripheral Bus (IBM CoreConnect Bus)

Operating System

Power Spectral Density

Random Access Memory

Reduced Instruction Set Computer

Read-Only Memory

Recommended Standard 232 (asynchronous serial line standard)

Real-Time Operating System

Static Random Access Memory

Universal Asynchronous Receiver/Transmitter

Wavelet Multi-Resolution Analysis

Soft Core Processor

1

CHAPTER 1: Problem Statement

1.1 Automobile Navigation

Navigation systems have always been essential for the aerial and marine

vehicles. However, over the years, due to the increasing road density and intensive road

traffic, the need for automobile (land vehicle) navigation has increased not just by

providing location awareness but also by enhancing the vehicular control, safety and

overall performance significantly [1]. Availability of appropriate technology is enabling

light and affordable (low-cost) automobile navigational systems. In this way, it is

becoming to be an attractive product in general consumer navigation market day by day

and is expected to be an integral part of future automobile industry.

1.1.1 GPS Navigation

With the advancement of technology, automobile positioning and navigation has

become an integral part of the automobile industry. The declining cost of GPS receivers

over the past few decades has rendered Global Positioning System (GPS) attractive for

automobile navigation applications. GPS provides position and velocity information to

automobile users [2]. As a result, most of the present civilian automobile navigation

devices are based on GPS technology. But, in the event of GPS signal loss, blockage and

attenuation, these devices fail to perform accurately. GPS signal outages are usually

caused by the obstruction by foliage, concrete overpasses, dense urban developments

viz. tall buildings or tunnels. Thus, an alternative method for determining position in

automobile navigation becomes necessary.

1.1.2 Inertial Navigation System

The suitable method which is widely used in this regard is Inertial Navigation

System (INS). In modern days, almost all INS systems are Strap-down Inertial

Navigation System (SINS) and they have the following two components:

a) Inertial Measurement Unit (IMU): It comprises inertial sensors such as three

gyroscopes ('gyro' in short) and three accelerometers. The assembly of three gyro

sensors and accelerometer sensors mounted orthogonally and located inside a moving

2

platform to calculate linear accelerations and angular velocities respectively is known as

an Inertial Measurement Unit (EVIU).

b) Navigation Computer: An EVIU detects the current acceleration and rate of change of

attitude (i.e. pitch, roll and yaw rates) in the earth's inertial frame. ENS transforms

accelerations and angular rates from inertial frame of reference to the navigation frame

of the automobile and mathematically integrates to calculate the incremental position,

velocity and attitude of the automobile. Then by summing up these incremental values

of position, velocity and attitude with the initial values respectively, the navigational

solution (i.e. position, velocity and attitude information) can be determined [4].

The terms Inertial Measurement Unit (IMU) and Inertial Navigation System

(INS) are often confused. As mentioned above, an M U is an instrument that measures

specific forces and angular rates relative to an inertial frame of reference using its three

orthogonally placed accelerometer and gyro sensors.

An INS contains an IMU as one of its components and also includes a

computation unit namely NCU to derive meaningful navigation solution (position,

velocity and attitude information) from EVIU measurements. Effort has been made to use

the terms EVIU and INS in their proper context throughout this thesis. The term "EVIU

sensors" has been used specifically to refer to inertial sensors, also known as

accelerometer and gyro sensors.

Unlike GPS which depends on external satellite aiding, INS is a self-contained

system and is not affected by any external disturbances. It has a good short-term

performance. But EVIUs (accelerometer and gyro sensors) tend to be expensive and their

performance and cost varies depending on their grade. Low-grade EVIUs can provide

navigational solution for a shorter period of time and their performance deteriorates

immensely in the long run as they suffer from accumulated error. While calculating a

navigational solution, measurement noise of low grade EVIU sensors is accumulated as

error and it increases dramatically with the passage of time. This leads to an ever

increasing error in the navigational solution in the long-term.

3

1.1.3 GPS/INS Integration

In most cases, the problems of GPS as a stand-alone navigation system can be

overcome at least for a short period of time by a GPS/INS integrated system. The main

idea is to use both GPS and IMU devices together. In this integrated system, GPS signal

data is used when it is available (i.e. there is no GPS signal outage and the signal is in

the least erroneous state) to obtain position and velocity information. In the mean time,

the INS in real-time mode continues to calculate the position, velocity and attitude. But

as soon as an outage of GPS data is detected, the navigational solution from INS is put

into use. This is the simplest possible way of integrating the two systems.

To improve navigational solution even further during a GPS outage, GPS/INS

data is fused by any one of several optimal estimation techniques. They are Kalman

filtering (KF), artificial neural network etc. KF uses dynamic model of INS and GPS

errors, stochastic model of the inertial sensor errors and prior information about the co-

variances of the data provided by the systems [4]. In this way, while there is no GPS

outage, using several initial error characteristics, the filter models the overall system

error characteristics. During a GPS outage, KF predicts or estimates the future position,

velocity and attitude errors and also the output of the inertial sensors (accelerometer and

gyro sensors). By correcting these errors, the overall navigational solution can be

improved.

1.1.4 IMU Sensor De-noising

INS is inherently immune to the signal jamming and blockage vulnerabilities of

GPS. But as the time progresses (during a GPS signal outage while using INS solution),

the performance of the INS degrades while using low grade accelerometer and gyro

sensors. The accuracy of low-grade INS is significantly affected by the low and high

frequency noise characteristics of its inertia! sensors. One of the techniques to improve

the accuracy of the raw data of accelerometer and gyro sensors is to use a de-noising

technique [5]. By pre-processing the EMU data using a de-noising technique, the effect

of complex short-term (high frequency) and long-term (low frequency) noise

characteristics produced by different error sources is reduced considerably.

4

1.2 Research Focus

The main objective of this research is to introduce a real-time implementation of

GPS/INS integration module for land vehicles applications on the Xilinx MicroBlaze

soft core processor (SCP) running on a low-cost Spartan-3 FPGA platform.

The research objectives of this thesis can be summarized as follows:

1.2.1 Objective 1

To implement algorithms introduced in the section 1.1 of the thesis using low

cost Xilinx MicroBlaze SCP embedded on a low cost Spartan-3 FPGA. Most of the GPS

devices provide directly 3 velocities and 3 positions. In contrast, the low-grade Micro-

Electro-Mechanical-System (MEMS) based IMUs (accelerometer and gyro sensors)

provide raw data of 3 accelerations and 3 angular velocities in vehicle's body frame. In

the simplest form, implementing a GPS/INS integrated system may include the

following steps:

a) Pre-processing raw IMU data: using a wavelet de-noising technique [6].

b) 2D and 3D Mechanization: converting the linear acceleration and rotation rates from

the vehicle reference frame to position, velocity and attitude information in the

navigation reference frame.

c) GPS/INS data fusion: using KF.

In short, the goal is to implement a NCU (Navigational Computing Unit) that

executes the abovementioned techniques using the accelerometer and gyro sensor

measurements along with an external GPS sensor data. More specifically, it was aimed

to implement a NCU on a low cost embedded platform using low-cost sensor data,

instead of an expensive microprocessor.

1.2.2 Objective 2

To provide a comparative output (i.e. navigational solution: position and

velocity) analysis of GPS/INS integrated system implementation between the embedded

platform and the microprocessor. In this regard, the use of embedded resources and its

compact area utilization metrics show the simplicity of the automobile navigational

application.

5

1.2.3 Objective3
To provide a real-time navigational solution of the GPS/INS integrated system

implementation. That is to say, the system accepts data in real-time mode and processes

them. And then after a short time delay, it will provide the solution. To process data for

such specific applications (GPS/INS integrated systems), the number of clock cycles is

measured. And in that way, a timing analysis of the implementation is shown.

1.2.4 Objective 4

To present the GPS/INS integrated system implementation in such a way that it

can be used as a model or generic platform/reference for the implementation of similar

navigational algorithms which are still in research and development phase. This includes

more effective and computationally complex IMU data pre-filtering algorithm such as

the FOS (Fast Orthogonal Search) algorithm which is a high resolution spectral de-

noising of low-end (MEMS-based) inertial sensors [5]. It also includes GPS/INS

integration technique for resolving GPS outages with longer duration using artificial

neural network methodology which is under research and development stage [5][6].

1.3 Thesis Outline

This Thesis is organized as follows.

Chapter 2 presents relevant concepts for this thesis. It introduces the background

information required and presents the necessary mathematical equations from

implementation point of view to gain an appreciation for the work conducted in this

thesis. It discusses the key concepts behind INS operation. IMU sensors (inertial

sensors) and their errors are also discussed, and are followed by an elaborate discussion

of the KF technique for GPS/INS integration. The chapter ends with a description of

inertial sensor pre-filtering techniques such as wavelet de-noising.

Chapter 3 begins with a summary of implementation environment, Spartan-3

FPGA as embedded system platform and the SCP Xilinx MicroBlaze. The

implementation methodology of the research that was used to develop the hardware and

the software using the equations represented in chapter 2 is presented in details here.

6

Chapter 4 presents the result of the embedded implementation described in

chapter 3. It discusses the timing performance of the embedded navigational application

to validate the real-time operation capability of the implementation and its software

profiling output. Subsequently, the chapter outlines the hardware utilization summary of

the embedded software. This is followed by a discussion of all the abovementioned

results.

Chapter 5 draws main conclusions of the implementation methodology presented

in this thesis. It provides some recommendations from the point of view of embedded

implementation methodology for future designers and engineers who will be involved

with similar kinds of implementation.

7

CHAPTER 2: Background on Vehicular Navigation

In Chapter 1, the automobile navigation was introduced. In this chapter, the

concepts will be further explored so that the subsequent chapters of the thesis become

understandable. First, general information regarding GPS is presented, including its

principles of operation as well as common sources of errors. Before presenting inertial

navigation mechanization and error equations, various navigation frames (to which

navigational information is defined), Earth's model (to define Earth's the variable

geometry and gravity parameters) and required mathematical (mostly geometry and

trigonometry) concepts related to attitude representation are discussed. Then, using the

INS error equations, GPS/INS integration through Kalman filtering (KF) technique is

presented. Finally the INS raw data pre-processing using wavelet de-noising

method/technique is presented. The understanding and the mathematical equations

required to construct an automobile Navigational Computing Unit (NCU) that has been

carried out in the Implementation Methodology (chapter 3) of the thesis is presented in

this chapter.

2.1 Global Positioning System

GPS stands for Global Positioning System. It is a satellite-based radio-navigation

system that is able to calculate position on the Earth. It consisted of 24 satellites (in

1993) orbiting at an altitude of 20200 kilometers in an approximate circular path around

the Earth. According to Wikipedia, as of March 2008, there are 31 actively broadcasting

satellites in the GPS constellation. GPS satellites are arranged so that a minimum of four

satellites are placed in each of six Earth's orbital planes. In this way, four to ten satellites

are always visible above an elevation angle of ten degrees from any place on earth.

These satellites are continuously monitored by numerous worldwide ground stations.

GPS satellites broadcast navigation messages and provide a 24-hour all-weather

navigation service globally. GPS provides three different observations. They are pseudo­

code, carrier phase and phase rate (also known as Doppler). The position update

measurements can be derived by solving either pseudo-code or carrier phase

8

observations from at least four satellites. Using phase rate or the Doppler frequency of

the received signal, GPS receiver determines the receiver's velocity [7].

2.1.1 GPS Operation

There are three main segments in the Global Positioning System namely Space,

Control and User segment as shown in figure 2.1 (modified and reproduced from [8]).

The Space Segment consists of orbiting satellites with antennas pointed towards the

Earth that broadcast signals. Each satellite contains atomic clocks. The Control Segment

which consists of worldwide base-stations that monitor the satellites to track their exact

orbital position, altitude and speed in space and to make sure that they are operating

correctly. The User Segment consists of available GPS receivers that detect, decode and

process the signals received from the satellites. They are made up of hardware (also an

antenna) and processing software for positioning, navigation and timing applications [7].

Figure 2.1: Space, Control and User segment of GPS.

Determining an exact position at the intersection of three spheres using three

range information and exact co-ordinate information of the satellites is illustrated in

figure 2.2 (modified and reproduced from [8]). A GPS receiver's position is calculated

from the intersection of the signal propagating sphere. Here, the GPS satellites are

located at the center of the spheres whose radiuses are the receiver-satellite distances.

9

The signal transmitted by a GPS satellite is detected by the antenna of a GPS receiver

and is processed accordingly. It receives a signal using direct line of sight with any GPS

satellite and determines the required time (time difference) taken by the received signal

to travel from the corresponding satellite. The apparent transmit time of the satellite

signal from a GPS satellite to a specific receiver is used to calculate the range in that

GPS receiver. Mathematically, range = time difference x speed of light. If the GPS

receiver clock and the GPS satellites clocks were synchronized with each others, only

three range observations would be required to compute the receiver coordinates in 3-D

space as shown below. But in reality GPS receiver clocks are not as precise as the GPS

satellite clocks. This causes time synchronization error known as receiver clock bias. A

range measurement with an error in time synchronization is referred to as a pseudorange.

Thus, GPS signal contains the pseudorange information and the respective satellite

coordinates as a function of time [7].

;Kttdwn safellrte^coordinates

[o(u yu 2i)
/ J

\
\

I I
/ I

/
3 / Intersection of range

' /measurement spheres
/

/

TheEarttf

Figure 2.2: Illustration of Single Point Positioning using G P S .

Pseudorange includes the calculation of the range and receiver clock bias. By

using at least four such measurements and the satellite position, the equation is reduced

to determining four unknowns. They are the receiver's three position co-ordinates and

10

clock bias. In this way, pseudorange is used in a least square parametric model to solve

for four unknowns [2]:

P,=J(x,-xH)2+(y,-yll)
2+(zl-zll)

2-b (2.1)

where, i is the satellite index,

P is the pseudo range (m)

Xj, y , , zt are the coordinates of the /th satellite (m, m, m)

Xi„ y u , Zu are the coordinates of user (m, m, m)

2.1.2 Drawbacks of GPS
GPS is able to provide precise positioning information to an unlimited number of

users anywhere on the Earth. It is an absolute positioning system. Today, most vehicular

(aerial, marine and also ground-based automobile) navigation systems rely mainly on the

GPS receiver as it is a primary source of information to provide the position of the

vehicle. [4]. Due to its availability through a comparatively low-cost and small-sized

electronic receiver, the number of applications using GPS has increased dramatically

over the last few years. However, under tunnels and overpasses, in downtown settings

with high-rise buildings all around and in densely forest areas due to tall trees, the

number of tracked satellites by a receiver may fall below four. This causes GPS outages

when GPS receiver can no longer generate a navigation solution on its own. Thus,

maintaining a direct line of sight between GPS receiver and with at least four GPS

satellites is essential. In other words, without having a clear line of sight all the time

between the satellite and the receiver, it is not possible to use GPS as a stand-alone

navigation system for vehicular application [7]. The aftermath of a GPS outage can

cause a discontinuity or a jump in the GPS carrier-phase measurement by an integer

number of cycles and provide erroneous navigational solution.

Apart from signal outages, there are generally six standard errors that GPS signal

data might contain. They are ephemeris error, satellite clock error, receiver clock error,

atmospheric disturbances, position dilution of precision (caused by poor geometry of the

satellites in the sky) and multipath interference. They contribute to the degradation of

the accuracy of the receiver's performance [9]. Some of these error effects can be

11

reduced by combining GPS control segment and user segment with a GPS receiver in

real-time mode.

The GPS control segment is made up of five monitor stations located around the

world, four antennas and a Master Control Station (MCS) that tracks GPS satellites

accurately. As the locations of the satellites are know by these stations precisely, an

'inverted' positioning process calculates the orbital parameters of the satellites and

broadcast it in a regular time interval to the GPS receivers to minimize the GPS error

effects [3]. The GPS MCS processes measurements taken at the monitoring base stations

and develops predictions for the orbits (satellite orbital models) and satellite clock

behavior. Then it sends this data to the antennas for transmission to the satellites for

broadcast to the GPS receivers [10]. In this way, ephemeris error and satellite clock

errors are significantly reduced.

In order to eliminate some more of those abovementioned errors, double

differencing technique namely Differential Global Positioning System (DGPS) is used.

DGPS is based on the simultaneous use of two or more receivers where one stationary

reference or base receiver is located at a known location while the position of the other

remote receiver is to be determined. The known position of the reference receiver is used

to estimate corrections to the GPS derived position. These corrections are then

transmitted to the remote receiver and thus the remote receiver computes position with

more accuracy. DGSP employs the fact that GPS errors are very similar over a distance

of up to several hundred km and ensures most of the time a meter level accuracy [2].

The atmospheric disturbance to the GPS signal propagation is countered to an extent by

DGSP technique.

GPS signals propagate in the form of microwave radio waves and get reflected

by solid objects like buildings, large canopy etc. as they cannot penetrate them. As a

result, instead of coming from direct line-of-sight, the GPS satellite signal can arrive to

the GPS receiver from different paths of reflection. This phenomenon is called multipath

interference and it results in the distortion in the range measurement. Its impact on the

12

measurements is uncorrelated between two receivers (or even among control segments)

and thus cannot be reduced using DGPS [7].

2.2 Navigation Frame

The various navigation frames to which the position information is defined are

introduced in this section and presented in the figures 2.3 to 2.6 (all of them have been

reproduced from [4][12]). These navigation co-ordinate systems are used in the

subsequent sections to derive INS mechanization and KF equations.

ze A
Earth's center of Earth's center of

mass Mean Greenwich
Meridian

X-axis is pointing
towards vernal

equinox Equ§

Figure 2.3: Inertial frame (/-frame).

Equator

Figure 2.4: Earth frame (e-frame).

2.2.1 Inertial frame (/-frame)

Inertial frame has its origin at the centre of the Earth and its axes are stationary

(non-rotating) with respect to the fixed stars [11]. In this frame, the Z-axis is coincident

with the Earth's polar axis, the X-axis points towards the mean vernal equinox and the Y-

axis points towards the direction to complete the right-handed orthogonal rule. All

inertial sensors produce measurements relative to an inertial frame but resolved along

the instrument-sensitive body frame [10].

2.2.2 Earth frame (e-frame)

Like the inertial frame, e-frame has its origin at the centre of the Earth. The axes

are fixed with respect to the Earth, in the figure 2.4 defined by the axes X*, T, 2? with 2?

along the Earth's polar axis. The axis X* lies along the intersection of the plane of the

Greenwich Meridian with the Earth's equatorial plane. The Y -̂axis points towards the

direction to complete the right-handed orthogonal rule [11]. The Earth frame rotates with

respect to the inertial frame at an angular rate coe = 2#/24 rad/hr ~ 157hr which is also

13

referred to as earth's rotation rate about the Z-axis. In other words, the Z* axis is parallel

to the spin axis of the Earth.

Figure 2.5: The local-level frame (/-frame) Figure 2.6: The body frame (fo-frame).

2.2.3 Local level frame (/-frame)
Local level frame is a local geodetic frame and its origin coincides with the

inertial sensors frame. With the local level ENU (East, North and UP) frame, the X, Y

and Z axes of the inertial sensor are aligned with geodetic East, North and vertical up

direction respectively. The ENU frame is used as the frame of reference in this thesis

while converting the accelerometer and gyro measurements into position, velocity and

attitude information. In the same way, the GPS "navigational solution" refers to position

and velocity information in this frame. Figure 2.5 and figure 2.14 (reproduced from

[11]) illustrate the ENU frame or the local level frame.

2.2.4 Body frame (b-frame)
It is an orthogonal axis set and is made coincident with the axes of the vehicle's

moving platform in which the sensors are mounted. As shown in figure 2.6 (reproduced

from [11]), the y axis is defined in the forward direction, the z axis is defined pointing to

the vertical up direction of the vehicle and the x axis completes the right-handed

orthogonal co-ordinate system.

2.3 Earth Models

In this section, approximations to the Earth's shape and gravity models tailored

(simple and suitable) for land vehicle navigation amenable to simple mathematical

descriptions are presented. An accurate model of the Earth's shape is necessary so that

14

an accurate solution (position, velocity and attitude) of a moving vehicle can be resulted

from its inertial mechanization process. The Earth's gravity model is used to determine

what part of the sensed acceleration by the inertial sensors is due to vehicle dynamics

and what is due to the Earth's gravitational attraction [12] [14].

2.3.1 Ellipsoid Geometry

Owing to the slight flattening of the earth at the poles, it is customary to model

the earth as a reference ellipsoid instead of considering the typical perfect sphere model.

It approximates more closely to the true geometry than the spherical model as shown in

figure 2.7 (modified and reproduced from [13] [14]) and 2.8 (modified and reproduced

from[10][ll][12]).

<f+q>

Figure 2.7: Illustration of eccentric (r), geocentric (0') and geodetic latitude (cp).

Here, N is the prime vertical radius of the best fitting Earth ellipsoid (East-West)

and M is the corresponding meridian radius of curvature (North-South). They are also

known as meridian radius and denoted as N in figure 2.7 and 2.8 and transverse radius of

curvature respectively. They are expressed as [10] [11][14]:

a
N =

(l - e 2 s i n >) l / 2

M =
a(\-e2)

(\-e2 sin2 tp) 3/2

(2.2)

(2.3)

15

Where, Length of the semi major axis, a = 6378137 m
Length of the semi minor axis, b = a(\- f) = 6356752.3142 m
Fattening of the ellipsoid, f = (a-b)/a = -0.0033528

Eccentricity of the ellipsoid, e = [f(2-f)]U2 =[(a2 -b2)la2f2 =0.0818

T Uneven surface
->of the Earth (not

to the scale)
The height

h' on the
surface of

the
reference

llipsoid

Figure 2.8: Local Meridian plane of reference ellipsoid.

2.3.2 Ellipsoid Gravity

Magnitude and the direction of the gravity vector vary with position on the

Earth's surface and height above it. Inhomogeneous mass distribution of the Earth is a

factor for this variation [11]. Precise knowledge of the gravity vector is important for

certain high accuracy applications such as for marine navigation. Gravity deviations are

represented by the following gravity vector referenced in the local level frame (ENU

frame) [12]: g = [- £g 7jg - g f

Where, C, = meridian deflection of the vertical (+ve about east), rj = normal

deflection of the vertical (+ve about north) and g = gravity magnitude (+ve about up). As

height deflection is not usually a major issue unless driving on a mountainous trajectory,

in automobile navigation, the gravity vector is approximated: g = [0 0 - gj

16

Here, g is computed from the following equation where Coo, CJO, C20, Coi, Cu,

C2/and C02 are constant values listed in table 2.1 [13]:

g = (C00 + C10 sin2 T + C20 sin4 r) + (C01 + Cn sin2 T + C21 sin4 T)/I + CQ2h
2 (2.4)

Table 2.1: Constant coefficient (unit in m/sec) for normal gravity.
Coo
CJO

C20

Coi

c„
C21

C02

9.780326582929618
5.197841463945455 x 1 0 2

-1.18852395328380* 10"4

-9.411353888873278* 10'7

.347079301177616><10'9

-3.034117526395185 XlO"12

6.685260859851881X10 l4

Here, the eccentric latitude (T) is defined by the following equation:

T = tan~][(b/a)tmq)] (2.5)

2.4 Attitude Representations

Various mathematical representations are used to define the attitude of a body

with respect to a co-ordinate reference frame. The parameters associated with each

method are updated as the vehicle rotates using turn/rotation measurements provided by

the gyro [11]. The attitude representations discussed in this section are used to derive 3D

INS mechanization equations. The three attitude representations are the following.

2.4.1 Direction Cosine Matrix
The direction cosine matrix (DCM) is a 3 by 3 matrix, the columns of which

represent unit vectors in body axes projected along the reference axes. It is denoted by

the symbol R[. It can be written here in component form as follows:

K =
rn
rn

/ 3 1

rn

22

r32

13

r23

r 3 3 .

The columns represent unit vectors in body axes projected along the reference

axes. The element in the z'th row and the 7th column represents the cosine of the angle

between the f-axis of the reference frame and they'-axis of the body frame [11].

17

* . =

R2 =

2.4.2 Euler Angles

A transformation from one co-ordinate frame to another can be carried out as

three successive rotations about different axes taken in turn [11] [12]. For instance, a

transformation from reference axes to a new co-ordinate frame may be expressed as

follows where y/, 6 and 0 are referred to as the Euler rotation angles.

Rotation through angle y/ about reference z-axis can be expressed by as [11] [12]:

cos^ siny 0

- s i n ^ cosy/" 0

0 0 1_

Rotation through angle 9 about new _y-axis after the first rotation as the y axis has

been transformed to a new position. It can be expressed as [11] [12]:

cos 9 0 - sin 9

0 1 0

sin 6 0 cos 6

Rotation through angle </> about new x-axis (after the first and second rotation

mentioned above, this axis has been transformed). It can be expressed as [11] [12]:

1 0 0

0 cos (/> sin <j>

0 - sin (/> cos <j)

2.4.3 Quaternion

The quaternion attitude representation allows a transformation from one co­

ordinate frame to another to be effected by a single rotation (about a vector ju defined in

the reference frame). Theoretically, quaternion is a four-element vector representation,

the elements of which are functions of the orientation of this vector and the magnitude of

the rotation [11]:

g,l f(jix//i)sm(ji/2y

q2 = (//>,///)sin(///2)

q3 (//. ///)sin(///2)

q4 cos(///2)

* 3 =

Q =

18

Here, Q is the vector of Quaternion parameters. jux, juy and JU- are the components

of the angle vectors and /u is the magnitude of ju . The rotation angle ju = Jfi* +ju2
y + fl2_

2.4.4 Relationships between DCM, Euler Angles and Quaternion

To solve INS attitude mechanization equations, quaternion is used over the

parameterization of the rotation matrix R[due to computational simplicity. Four

differential equations are solved numerically instead of six differential equations if the

rotation matrix R[is manipulated directly. It also avoids the singularity problem

introduced with some other solutions methods (with DCM and/or Euler angles methods).

Quaternion parameters can be expressed using the DCM elements in the following way

[10] [11]:

0.25(Rn-R2,)/q4

(2.6)

0.5^1+ A, 1+^22+^33

In the reverse way, DCM can be formed using the Quaternion parameters

[10][11][12]:

q2

.44.

0.25(Ru-R3i)/q4

0.25(R2i-Rn)/q4

RL

r\i

r22

r32

-,
r i3

r23

^33 _

=

q^-ql-ll+ql ^q^-q^) ^(q1q3+q2qA)
= 2(tf, tf2+03£4) -ql+ql-ql+ql 2(q2q,-qiq4) (2.7)

2(qlq3-q2q4) 2{q2q3+q{q4) -q\ -q\+q\ +q]_

A transformation from reference to body axes may be expressed as the product of

three separate transformations: Rf = R3R2Ri

In the same way, the inverse transformation from body to reference axes is given

by[U][12]:R'b=R?r=RfR2
TRl

K =

K =

1 ^ 2 ^ 3

cos#

0
- s i n #

0

1

0

sin#

0

cos#

"1

0

0

0

COS0

sin^

0

- s i n

cos<

cos yr - sin yr 0

sin y/ cos y/ 0

0 0 1

cos#cos^ - c o s ^ s i n ^ + sin^sin^cos^ sin0sin^ + cos^sin#cos^

costfsin^ cos^cos^ + sin^sintfsiny - s i n ^ c o s ^ + cos^sin^sin^

- sin 9 sin <f) cos 9 cos <p cos 9

(2.8)

19

As gyro sensors provide data at a higher sampling rate and in that way any

attitude increment remains always small, it can be assumed that sin^ —*</>, sin#—>#,

siny/—)-y/ and cos ̂ —»•/, cos#—>7and cosy/—*l. Making these substitutions in the above

equation and ignoring products of angles which also become small, the DCM expressed

in terms of the Euler rotations reduces approximately to the skew symmetric form

[H][12]:

1 -y/ 6~

V 1 -*> (2-9)
- 9 <j> 1

The Euler angles may be derived directly from the DCM elements [11]:

K =

'32

'33

(j> — arctan

= arctan [— r31]

y/ = arctan

(2.10)

(2.11)

(2.12)

2.5 Inertial Navigation System

By measuring the accelerations and rotations applied to the inertial frame of

vehicle (and using initial position, velocity and attitude), an Inertial Navigation System

(INS) provides its position, velocity and altitude. Inertial Measurement Unit (IMU)

refers to the equipment containing an orthogonal triad of accelerometer and gyro

sensors. IMU is a part of INS and it detects the current acceleration and rate of change in

attitude (i.e. pitch, roll and yaw rates).

The output of an accelerometer due to a gravitational field is the negative of the

field acceleration. In vector notation, it is given a s : / = 5 - f . Here, / = specific force

measured by accelerometer, a = acceleration with respect to the inertial frame and g —

gravitational acceleration. Then the navigation computing unit (NCU) which is the other

part of the overall INS instrument processes them using mechanization equations to find

the total change from the initial position. In contrast to the absolute positioning system

20

like GPS, INS is a relative positioning system. INS derives its position and altitude from

integrating inertial referenced accelerations and angular velocities [4].

2.5.1 Grades of IMU

IMU sensors are of different grades based on the type of technology used to

build them and accordingly are of different cost. The higher the cost the better is the

sensor output. According to the performance quality and cost, they are usually labeled in

three different grades. They are strategic, navigation and tactical grades. The emergence

of inertial sensors made of micro-electro-mechanical systems (MEMS) in the past

decade has caused MEMS grade sensors to be widely used as well. Strategic grade IMUs

are very expensive and cost more than US $250,000. They provide highly accurate

navigational solution. Navigational grade IMUs are less accurate and cost in the range of

$70,000 to $100,000 USD. Tactical grade IMUs are even less accurate and less

expensive. MEMS-grade units are very small and inexpensive. The price is in the order

of US $500 to $2000 and while produced in mass quantity, the unit price can go below

$10. Due to inherent sensor noise, their solution tends to degrade rapidly (in the long

run) [4].

Micro-Electro-Mechanical Systems (MEMS) technology has shown promise for

the development of low cost IMUs. Advances in MEMS and computer technology

combined with the miniaturization of electronics have made it possible to produce chip-

based inertial sensors. They are inexpensive, small and consume low power. A recent

development of a complete MEMS IMU/GPS integrated navigation system by the

Mobile Multi-Sensor System (MMSS) Research Group at the University of Calgary had

price range of US $100-200 [15]. Thus, if a low-cost navigation solution comprising

integrated IMU and GPS sensors is produced in a very mass scale, the gyro and

accelerometer sensors price should be as low as below US $10.00 [\6].

2.5.2 Types of Inertial Navigation Systems

There are two distinct arrangements of accelerometer and gyro sensors and. they

are. Gimbaled mechanized and Strapdown. In gimbaled mechanized arrangement, IMU

sensors are commanded to maintain the platform frame alignment with a specific

21

navigation coordinate system. In this way, in spite of vehicle motion, the platform does

not experience any rotation relative to the navigation frame. Thus, accelerometers

aligned with the platform measure the specific force along the navigation frame axes.

After proper scaling and direct mathematical integration, this measured acceleration

yields the desired position and velocity vectors. Vehicle attitude is determined by

measurement of the relative angles between the vehicle and the platform.

Strapdown Inertial Navigation System (SINS) is a self-contained positioning and

attitude device that continuously measures (sampling rate higher than 50 Hz) three

orthogonal accelerations and three angular rates. Using these measurements, it calculates

the incremental position, velocities and attitude angles provided that initial position,

velocities and attitude were known. In this way, it keeps track of the vehicle's attitude,

more importantly the heading or azimuth angle of automobile vehicle with respect to a

reference frame. Currently almost all INS are of SINS due to their advantages in

reliability, higher output rate, low power consumption, light weight, low cost and

flexibility (mechanically less complex). In SINS, the sensors experience the full

dynamic motion specifically higher rotation rates of the vehicle and produce data with

higher range of bandwidth. Due to this increased dynamic range, it contains more noise

which causes gyro scale-factor error and nonlinearity [10].

2.6 IMU Sensor Errors

The accuracy of INS is significantly affected by the error characteristics of the

IMU sensors. The nature of the sensor errors can be categorized into two parts. They are

Deterministic and Stochastic Error.

Bias offset and Scale factor of accelerometer and gyroscope sensor are

deterministic errors. Bias refers to the offset in the measurement provided by an inertial

sensor. By definition, the bias of a signal is the signal it gives when there is no input.

The deterministic part of bias is called bias offset and can be determined by calibration.

The stochastic part of it is called bias drift as it is random in nature and it varies with

different factors like time, temperature etc. [4].

22

The scale-factor of an inertial sensor is the relationship between the output signal

and the quantity being measured. For example, a gyro provides a measurement of turn

rate about a given axis. The output of the gyro may take the form of a voltage or current

(an analog output) proportional to the applied turn rate plus a constant bias term caused

by the various imperfections within the sector. To convert it to a meaningful quantity

and unit, IMU calibration is used. Deviation from theoretical (measured by IMU

calibration) scale factor with temperature and repeatability causes scale factor instability.

Like bias drift, scale factors can be of random nature and can be modeled stochastically.

Unknown random (non constant) variations in bias and scale factor also significantly

contribute to inaccurate navigational solutions [4].

The IMU sensors in an INS have significantly complex short-term (high-

frequency) and long-term (low frequency) noise characteristics and they are contributed

by many different error sources. IMU sensor noise is a kind of common stochastic error

resulting from the sensor itself and/or other electronic equipment that interfere with the

measured output signals. Some kinds of noise are generally distributed across the

frequency spectrum and others are frequency centered. Unknown zero-mean additive

noise on the sensor outputs, quantization noise, computational noise (from

mechanization) and electronic noise are also major factors and these noises are usually

unpredictable. But its statistical properties are used in KF to estimate drifting scale

factor and biases. Axes misalignment is another kind of stochastic error resulting from

the imperfection of mounting the sensors [4]. EVIU Calibration is discussed in the next

section to counter the deterministic errors. IMU alignment is then presented as both of

these procedures are crucial before inertial navigation starts.

2.6.1 IMU Calibration

Accelerometer sensor calibration provides the relationship between the sensed

specific force and the actual specific force. In the same way, gyro sensor calibration

relates the sensed rate of rotation and the actual rate of rotation. The reference

acceleration is the magnitude of the local apparent gravity vector at the calibration site.

And the reference angular is the Earth's rotation rate. Thus accelerometer and gyro

23

calibrations are performed at a location where the gravity vector magnitude and geodetic

position have been determined with great precision. At various orientations of the

sensors, the outputs of the accelerometers and gyros are compared to reference values

and during navigation these differences are used to generate corrections to the measured

specific force and angular rate respectively [4] [14].

Table 2.2: Using six-position calibration technique, calculation of deterministic bias and scale factor (of
accelerometer and gyro sensors).

Accelero-
meter

Gyro

Measurement for up
position

up

b-(l + s)g

ba + Q+ SJa>e sin p

Measurement for down
position

dawn

b + (l + s)g

dawn

Calculated
Bias

z +z
up down

2

2

Calculated Scale
Factor

2g

aip-tyovM-mnW
2cqsm<p

Deterministic bias drift and scale factor calculation for IMU sensors can be

achieved by different calibration techniques namely local level frame calibration, six

position static test and angle rate tests. In six position static test, the sensors are mounted

on a level table with each sensitive axis pointing alternately up and down directions in a

static mode. Measurements are taken for 10-15 minutes and they are averaged.

Deterministic bias and scale factor are calculated by summing up and differencing

combinations of the averaged measurements [4]. Table 2.2 contains the required

mathematical notions where b, S, bm, Sm, (p, coe and g represent accelerometer bias,

accelerometer scale factor, gyro bias, gyro scale factor, latitude of the calibration

location, Earth's rotation rate (coe = 2#/24 rad/hr ~ 15°/hr) and gravity, respectively.

2.6.2 IMU Alignment
The SINS body frame can take any arbitrary direction as the accelerometer and

gyro sensors are strapped down to the vehicle which can be oriented in any direction

with respect to the navigation frame. The principle of strap down inertial navigation

(SINS) assumes that initial information about the system is already known. While the

starting position and velocity can be obtained using GPS assistance, the initial

orientation of the system is not typically available. Therefore, the INS requires

24

performing an initial alignment which produces coincidence between the sensor axes of

the IMU with the local level frame (shown in figure 2.5 and figure 2.14). The purpose of

this alignment is to establish the relationship between the body frame and the local level

frame. Thus the initial parameters of the rotation matrix (R!
h) between the body frame to

the local-level frame are calculated. Once the alignment is done, the rotation rates

measured by the gyros are used to constantly update the R'h matrix. This updated matrix

is then used to transform the accelerometer measurements to the navigation frame [4].

Initial alignment is done in two steps, namely accelerometer leveling and gyro

compassing. Accelerometer leveling aligns the z-axis of the accelerometer triad to the z-

axis of the local frame by driving the horizontal accelerometer outputs to the value zero.

After accelerometer leveling, gyro compassing is performed based on the principle of

sensing a component of the Earth rotation by gyro sensors. This component (coecos(p) is

at its maximum when the sensitive axis points North and zero when it points East [4].

Accurate alignment is necessary to achieve satisfactory navigation solution as it can

severely influence the performance of an inertial navigation [11].

2.7 2D INS Mechanization Equations

The idea of mechanization is to determine velocity and position in a desired co­

ordinate system. The sequence of equations used to convert the IMU outputs of angular

rates and accelerations to ENS outputs of positions, velocities and attitudes are called

Mechanization Equations. They include a set of first order differential equations that

transform the raw IMU measurements into position, velocity and attitude components

[10]. The computational processes required to perform the navigation task in 2D are

much simplified compared with a full strap down system in a 3D space. In other words,

being functionally identical, 2D Mechanization presents a foreword for the much

complex 3D Mechanization equations [11].

A vehicle constrained to move in a single plane can use an inertial navigation

system to find its navigational solution. In this case, the system contains two

accelerometers and a single axis rate gyro attached rigidly to the body of the vehicle.

25

The azimuth angle (A) is obtained from mathematically integrating the gyro angular

velocity. The initial azimuth angle A0 is required for this.

A{t)=\o)Hymdt + A0 (2.13)

North

Figure 2.9: Rotation of body frame by about the vertical axis.

Measurements taken by the sensors are in the body frame as the sensors are

mounted in this frame. These measurements are transformed to the navigation frame:

/
•navination ryn rbodx

~KbJ
Here, jnavisa"on j s m e acceleration in the navigation frame (which is the local level

frame). In a 2D scenario, the local level frame constitutes only East and North direction.

j y is the acceleration in the sensor's body frame and Rl is the rotation matrix which

transforms body frame parameters to navigation frame. In detailed equation form:

/ £ = / y s i n A + / rcosA

/ w = / , c o s A - / J s i n A

In matrix form:
cos A sin A

- sin A cos A A.
(2.14)

Here, as illustrated in figure 2.9 (reproduced from [4][12]) and shown in

equation (2.14), fx and fy are the accelerometer measurements along the x and y

directions of the body frame, /E and /N are the corresponding East and North

accelerations in the local level frame and A is the azimuth angle. By mathematically

integrating, the incremental values of position and velocity can be calculated.

V(t) = V(t0)+$f(t)dt
o
i

P{t) = P(t,)+\v{t)dt

(2.15)

(2.16).

26

Accelerations (fx

and fy)

Angular velocity

(Wz)

___Unjt___

Conversion

and

Bias and

Scale Factor:

Correction

:Transformation to';
I the reference ;

frame

previous, velocity p r e v iogs position

y *
• r. . fc- r-| .•"• position
•J- T i j ; '-: (latitude and longitude)

Jh a velocity (V Jtd V)

^ heading

previous heading
Figure 2.10: Block diagram illustrating 2D INS Mechanization.

Figure 2.10 (modified and reproduced from the [4]) summarize the mathematical

equations involved in 2D Mechanization procedure.

2.8 3D INS Mechanization Equations

The previous section has outlined the basic form of the computing tasks to be

implemented in a strap down system using a simplified 2D representation. In contrast,

attitude information in 3D Mechanization cannot be obtained by a simple integration of

the measured angular rates. In this scenario, the three gyro outputs contain not just only

actual angular velocities of the moving body, but also both the Earth's rotation and the

change in orientation of the local-level frame. The measured angular velocities by gyro

can be decomposed as (in the skew-symmetric matrix equation form representation):

n*B = n*„+n£=n*-Q» (2.n)

7eA
0Je

V North
(iJJ>CPS(p

/ „ E a s t
/ ,'ujesin(p

Figure 2.11: : De-composition of the Earth's
rotation in local level frame Figure 2.12: Change of local North and Vertical directions

during motion over the surface.

27

Qffcis the skew-symmetric matrix of the measurements of angular velocities

provided by gyroscopes and it can be calculated directly from gyro outputs:

O). G),
(2.18)

0 -

co. 0 -6)x

-<°y °>x °
Since, fflf=/?X and atel = R* alel, then attt = atu + attl = R*(aile + (del). In

elaborate form, it can be written as follows and in that way £lh
u can be calculated:

r „„ V

4=*!
f 0 A

coe cos cp

v ^ s i n ^
+

•V

M+h
Ve

N + h
Vg tan^

N + h

(2.19)

Here, Q'ie and Q.'el are the skew-symmetric matrices corresponding to the angular

velocities tf^and ^respectively. The angular velocities tf^and cddare illustrated in the

figure 2.11 and figure 2.12 (reproduced from [11]) can be expressed mathematically as:

0}\e = [0 0)e cos (p 0)e sin (p\ (2.20)

4 = •V" V tan <p
(2.21)

M + h N + h N + h
The mechanization process can be separated into three parts:

2.8.1 Attitude Mechanization

The initial attitude angles obtained (usually from the alignment procedure): pitch

(6), roll {</>) and azimuth (y/) angles form the rotation matrix R'h. By solving the time

derivative equation of the transformation matrix, the incremental attitude angles of the

moving body is determined:

^=J?X=^(«*-«S) (2-22)
To solve the above differential form, quaternion parameters for the initial time

step (Qk at time fy) are calculated from the initial DCM Rl
h. Then, the quaternion

28

parameters for the next time step (Qk+i at time tk+i) based on the values of the quaternion

parameters <2A at time tu are determined: Qk+1 - Qk + — ̂ (fyjgi At

Once the quaternion parameters are determined for the next time step (Qk+i at

time tk+i), the rotation matrix (in the DCM form) R'b can be obtained using the DCM

expressed in quaternion parameters relation. The updated rotation matrix R[is then used

in transforming the more recent (newly sampled) accelerometer measurements to the

navigation (or in the local level frame) frame. Using trigonometric relations between the

Euler angles and the DCM, pitch {&), roll (</>) and azimuth (y/) angles can also be

obtained [4].

2.8.2 Velocity Mechanization
The velocity is expressed by three components along the East (V*), North (V")

and vertical (V") directions, V1 =[Ve Vn Vf.

North

Figure 2.13: Coriolis acceleration on rotating
Earth.

Figure 2.14: Local level ENU frame.

The acceleration of the moving platform is measured by the accelerometers in

three mutually orthogonal directions in body frame/'' =[fx f fzY- Velocity

components cannot only be deduced integrating directly from acceleration components

in the local-level frame of the moving component. To transform these measurements

into the local level frame, the updated rotation matrix (R'h) calculated in the previous

section (2.7.1. Attitude Mechanization) is used as follows:

29

/'=[/„ /, fJ=Kfh=Klf> fy fj (2-23)
The R'hf

h term transforms the acceleration measurements from the body frame

to the local level frame. In addition to the sensed acceleration of the moving body and

the Earth's gravitational acceleration, the accelerometer measurements include for the

apparent acceleration sensed by the vehicle as it moves within a rotating coordinate

frame. This apparent acceleration is caused by the Earth's angular rotation rate

(illustrated in figure 2.11) and the change in orientation of the local-level frame

(illustrated in figure 2.12). As previously discussed, the skew-symmetric matrix Q.'je and

Q!
el accounts for the effect of the Earth's rotation coe at the vehicle's position and the

change in orientation of the local level with respect to the Earth respectively. It is also

referred to as Coriolis acceleration. The Coriolis acceleration effect on a moving point

on a rotating platform is illustrated in two dimensions in figure 2.13 (modified from

[11]). As the point moves away from the axis of rotation, it traces out a curve in space as

a result of the rotation. The dotted line in figure 2.13 is the trajectory required to travel

from O to R on a rotating earth.

Taking the abovementioned three factors (sensed, apparent and gravitational

acceleration) into consideration, the accelerometer output vector relation / -a-g can

be transformed from the inertial frame to the local level frame (in this case the ENU

frame) as the first order differential equation as (for details see reference [11]):

V'=RlJb-(2Q!ie+Q!el)V' + g' (2.24)

2.8.3 Position Mechanization
In the local level frame, the position of a platform is expressed in terms of the

curvilinear coordinates i.e. latitude, longitude and altitude: r' - \<p A h]T .

In figure 2.15 (reproduced and modified from [11]), latitude calculations have

been illustrated on a meridian plane, an imaginary great circle on the earth's surface

passing through the North and South geographic poles. The change of latitude is

expressed as:

30

<P
V"

M+h (2.25)

In the same figure, the longitude calculations have been illustrated on a parallel

plane (the Earth has been sliced parallel to the equatorial plane which perpendicularly

intersects the axis of rotation) of the Earth. The change of latitude is expressed as:

V (2-26)
A = -

(N + h)cos(p

Meridian plane Parallel plane: ̂ zoomed
. . . • from Meridian plane

•The height 'h' on the
surface of the

reference ellipsoid
(zoomed)

Arc V xA?
Radius (N + h) cos<p

AX = Change of longitude on
Parallel plane

Radius M + h
M = Change of latitude on Meridian plane

Figure 2.15: Illustration of the change of latitude on the parallel plane and change of longitude
on meridian plane.

Here, (p, k and h are the geodetic latitude, longitude and altitude. The figure 2.7

clarifies the difference between geocentric latitude and geodetic latitude. Geodetic

latitude (q>) at a point on the surface of the Earth is the angle between the equatorial

plane and a line passing through centre of Earth and the surface location point. In

contrast, geodetic latitude at a point on the surface of the Earth is the angle between the

equatorial plane and a line normal to the reference ellipsoid which passes through the

point [11].

The calculation of the change of position of a moving body is performed based

on the velocities in each direction. Once the velocities are known, the position can be

31

calculated accordingly. In matrix form the equation is expressed as the following, where

D"1 is a 3 by 3 matrix whose non zero elements are functions of latitude (jp), height (h)

and the Earth's radiuses (N and M):

> "
A
h

—

1

(N + h)cos <p

0

0

0

1
M +h

0

0

0

1

V"
v
yu

= D"V (2.27)

Finally, the 3D Mechanization equations in local level frame that represent the

change in position, the change in velocity and the change in attitude can be summarized

in the figure 2.16 (modified and reproduced [5]) following matrix form equation [4]:

r'

K

D"V
R'jh - (2QL+a[l)v'+g

l (2.28)

3 accelerations

fb = V, fy fz]
I / Gravity •

Correction1
previous position

Unit Convers ion ! . ^V ' = R'j"-(2D.'[e +Q'el)V'+g
and Velocity Mechanization

Bias and Scale
[Factor Correctionr • • R,

h =
 J1'"^''
Update

; Transformation Matrix ,-*

R^RKQJ;,,-^;,)

3 angular rates
01,/= [wx (j)y cuj

<p:
V"

• ; * • •

V"
M+h (N + h)cos(p

. Position Mechanizatipn

;h=V"
Position

Velocity

Rl Attitude
^Computat ion

Attitude
e , </>, \\i

previous position and velocity

Figure 2.16: Block diagram of the procedures of 3D Mechanization.

The input to these mechanization equations are the accelerometer and gyro

measurements (expressed as f and 0!]h in the above equation). Thus the navigational

function is fulfilled by combining the measurements of vehicle rotation and specific

force (acceleration) with knowledge of the gravitational field to compute estimates of

attitude, velocity and position with respect to a pre-defined reference frame [11].

2.9 INS Error Equations

The navigational solution of the ENS tends to deteriorate in the long term mostly

due to the mathematical integration involved in the INS mechanization procedure

32

presented in the previous section. To improve this situation, a dynamic error model is

used that includes position coordinate, velocity component and attitude component

errors (resulting form the INS mechanization procedure) and stochastic error models of

IMU sensors (for analysis and estimation of different unaccounted error sources). These

errors are variable in time and can be modeled by differential equations.

The mechanization equations discussed in the previous section provide no

information about the errors of the system as they process data received from the IMU to

obtain updated navigation parameters. To estimate the system errors in order to improve

performance to a satisfactory level, the system (shown in equation 2.24) is perturbed.

The linearization approach of differential error equations used in this section is

the perturbation representation for position, velocity and attitude errors to obtain

dynamic error equations [12]. In addition, stochastic modeled bias drift of IMU sensors

is a vital part of the dynamic error model. The first order Gauss-Markov is the most

commonly used stochastic error model due to its simplicity. Thus, the dynamic error

state vector for any INS system can be expressed as:

x = [8f 8A 8h dr 8y„ Sv„ 8e 8, 8W SWx 8W> ^ 8,. 8,. 8j (2.29)

Here, the prefix d implies the variable is an error value.

dq,, 8x and e)/, are coordinate errors.

8V,, 8y„ and 6 are velocity errors.

So, 8$ and S¥ are attitude errors.

Sfx, Sfy and dfz are accelerometer measurement errors.

dcox, da>y and dcoz are gyro measurement errors.

Using a Taylor series expansion to a 1st order approximation, neglecting the

higher order terms and simplifying several factors so that only the most significant error

components were included, the time derivative of the errors can be obtained. The error

equations are expressed as follows.

33

2.9.1 Coordinate errors

The rate of change of position components is defined as: (8r') =

fl -r' = ' 8r'. Applying Taylor series expansion linearization on position
dr

mechanization equation and afterwards neglecting higher order terms (i.e. the terms

which involve dividing the velocity components by the large Earth radius value),

coordinate errors can be expressed as [4]:

1 u u
' 8V'

SVl

SV"

Sr'
Sep

SX

Sh

(N + h)cos <p

0

0

0

1
M +h

0 1

(2.30)

2.9.2 Velocity errors
By applying the linearization and the first order approximation criterion on the

velocity mechanization equation (equation 2.24), the velocity error becomes:

8V1 =8R'jh + R>h8fh -(I^ + Q.'JSV1 -(2Xl'ie + &l'el)V' + 8g' (2.31)
Neglecting higher order terms (i.e. 1st order approximations), velocity errors can

be expressed as:

<^' = "/« ° fe W +K 9y (2-32)

. /. -/, o \[sw\ l$z_
2.9.3 Attitude errors

Ignoring the insignificant error terms (terms involving velocity components

divided by the Earth radius and the Earth rotation rate components), the attitude error

term becomes [4]:

86

8</>

Sy/

0

- 1

N + h
-tan<p

N + h

1
M + h

0

0

0

0

0

~fir~

svn

svu
+K

~8(DX~

8o)y

8co.

(2.33)

34

2.9.4 Accelerometer bias errors

After removing the deterministic bias and scale factor of the IMU sensors

(accelerometers and gyros), the residual part is modeled stochastically as a first order

Gauss Markov process. The accelerometer random errors are usually correlated in time

and expressed as follows [4]:

<f =
&

= 0
0

0
-ay

0

0 "
0

-a.
+

J 2a a1

V x ax

J 2a <72

\ y ay
J 2a.at

w{t) (2.34)

Here, ax, ay and az are the reciprocals of the time correlation parameters of the

random processes respectively associated with the acceleration measurements/*,/^ and

fz. On the other hand, aax, aay and aaz are the standard deviations of these processes

associated with the gyro measurements. w(t) is the unity variance Gaussian noise.

2.9.5 Gyroscope's drift errors
The gyroscope random errors are usually correlated in time and modeled as a

first order Gauss Markov processes as follows [4]:

Scbh =

86)x

da)v
>

Sco,

• A o
0 -A
o o

0
0

A.

~&ox~

8(0y

8a>:

+

^^A<
Mt) (2.35)

Here, (}x, fiy and pz are the reciprocals of the time correlation parameters of the

random processes respectively associated with the gyro measurements cox, coy and coz. On

the other hand, agx, agy and ogz are the standard deviations of these processes associated

with the gyro measurements. And, wit) is a unity variance Gaussian noise.

2.10 GPS/INS data fusion using KF

The 2D or 3D Mechanization solution using low-cost IMU sensor data is not

useful in the long run (during a GPS outage) since sensor errors and the fixed-step

integration errors in mechanization computation (resulted mostly from mathematical

integration process) cause the solution to diverge. The most common algorithm used to

integrate or fuse GPS and INS is KF that by accounting for these errors improves the

35

navigation solution. It operates with a set of mathematical equations and recursively

processes the noisy measurements to compute estimates.

2.10.1 KF based GPS/INS Integration Schemes

KF can be implemented in different ways such as loosely, tightly and ultra-

tightly coupled integration and can be implemented either in a closed loop or open loop

framework [4]. In tightly coupled and ultra tightly coupled scenario GPS clock timing,

pseudoranges, phase rate (Doppler) or carrier phase measurements are blended with the

navigation solution generated by the M U sensors [10]. Furthermore, tight integration

provides a means for implementing a more sensitive fault detection and isolation.

Navigational applications which use carrier-phase output for attitude determination and

carrier-phase positioning benefit from tightly coupled integration [5].

i" IMU Sensors
(accelerometers and I
gyro sensors):

\t = V* fy Q
Wb = [U)X U)y wj

Bias and ';
Scale
Factor j-

Correction,:

Correction feedback (15 state error vectpr)

INS
Mechanization:

GPS receiver jlnternal KF
GPS receiver

3 positions and

:' Kalman • ^fACorrected Output:
• Filter : ^—^3 positions, 3

velocities and 3
attitude angles

3 velocities
Figure 2.17: Decentralized and closed loop GPS aided SINS KF architecture.

In contrast, in a loosely coupled system, the GPS/INS integration KF uses GPS-

derived position and velocity (the modified output of a GPS receiver) as a measurement

instead of GPS-derived pseudo-range, phase and phase-rate. Loosely coupled integration

treats GPS and INS as individual navigation systems, combining the two at the

navigation solution level (3 positions and 3 velocities). The loosely-coupled filtering

approach has been chosen in this thesis (for automobile navigational application) due to

its modularity, smaller filter size, flexibility and simplicity [5]. For a loosely coupled

system there are two separate and independently operating KFs, one for GPS (internal,

as it comes with a GPS receiver) and the other for INS as shown in figure 2.17 (adapted

from [17]). It is also referred to as "GPS aided INS" because it treats the outputs of the

internal GPS KF as independent measurements.

36

Open loop KF approach does not account for the estimation of sensor errors. In

contrast, in closed loop KF, IMU sensor errors are stochastically modeled (as mentioned

in the previous section) and are fed back to correct the measurements, (as shown in

figure 2.17) for the corresponding errors before being computed and fetched for the next

epoch's/sampling interval's computation [17]. Open loop KF approach is used for high

end expensive IMU sensors with low sampling rate.

2.10.2 KF Models for GPS/INS Integration
KF is used for optimally estimating the error state of the GPS/INS system for

which the measurements are corrupted by variable noise. It uses a variable known as

Estimated State Vector (x) that can contain three position errors, three velocity errors,

three attitude errors and augmented by accelerometer and gyro sensors errors. Thus, a

dynamic model with 15 error states of INS is applied for this kind of KF based

integration in this thesis [18]. As shown in the previous section ("2.9. INS Error

Equations") of this thesis, the error state vector x for navigational parameters is

expressed as:

* = [*, *x Sh 8yr Sv„ Sv„ 8e 8, 8V ^ ^ 80z 8, 8f. 8ff ^

Another important variable used in KF is called Error Covariance Matrix (P). It

is a measure of estimation uncertainty which take into consideration how the sensor

noise and dynamic uncertainty contribute to the uncertainty of the estimated system

state. By maintaining an estimate of its position, velocity and attitude output estimation

uncertainty and the relative uncertainty in the sensor outputs, the KF is able to optimize

the estimate to minimize the estimation error. It combines the estimate with the

measurement using a variable called Kalman Gain (Kk) [17]. KF is essentially a set of

mathematical equations which has a prediction stage and an update stage [19].

a) The Prediction Stage

The Estimated State Vector x (shown in equation 2.33) and its covariance

matrix of estimation uncertainty P propagate from one time step to the next in this stage

[17].

A linear model in discrete time can be shown as:

37

Prediction of error states: xk = Fk t_1xA:_1 (2.37)

Prediction of error covariance: P~ = Fkk_)Pk_lFk
T

Ji_l + Gk_}Qk_iGl_i (2.38)

Here, Fk,k-\ is the state transition matrix, it relates the state from the previous step

(denoted by subscript k-\) with present step (denoted by subscript k).

Qu-\ is the system noise covariance matrix given by Qk = iijw^ w[J

G/t-i is the system noise coefficient matrix which represents how the system

noise w is distributed among the INS error state components.

p-
k is the priori estimate of the covariance matrix for the estimate of the error

state vector x where: Pk = E^xk - xk)(xk - xk)T J

In most KF implementations the sensor noise portion of this State Transition

Matrix is based on a 1st order Gauss Markov model (a stochastic model) as shown in

equation 2.34 and equation 2.35.

The state transition matrix Fk,k-\ can be obtained using the following Taylor

expansion approximation equation:

FkM = exp(FA0 ~ l + FAt (2.39)

b) The Update Stage

The update stage corrects the Estimated State Vector fus ing new

measurements. This is carried out in the following equation:

xk ~ xk + Kk \Zk - Hxk) (2.40)

The Kalman Gain Matrix Kk is the optimal weighting matrix for combining new

GPS data with priori estimate jc^. Here, the size of Kalman Gain Matrix (Kk) is 15 (for

each Error State) by 6 (for each value of Design Matrix Variable). Mathematically it is

expressed as the following equation:

Kk=p-HT
k(HkP-HT

k+Rkr
l (2.41)

GPS position and velocity measurement update is given in following equation:

38

zk = \pms - <P,»* Ams - xGK h » - h - VL - v<PS v;i
m - vj„s. v;NS - v o ; , f

(2.42)
The Measurement Vector (zk) of update stage can also be represented in the

following form as it is the difference between the INS and GPS position and velocity:

Zk ~Hkxk +v (2.43)
Here in equation 2.37 and 2.40, Hk is the Design Matrix which provides ideal

noiseless relationship between the measurement vector Zk a°d the INS Error State

Vector^ . The Matrix (Hk) is designed with the number of common parameters between

INS and GPS (six in total: <p, X, h, V, V and V")- The number of rows is equal to the

number of common parameters and the number of columns is equal to the length of the

error state vector x.

The Error Covariance Matrix (P) has the size 15x15 (where the initial values

only on the diagonals) is updated in this stage with the following equation:

PK=(I-KkHk)Pk- (2.44)

The Measurement Error Covariance Matrix (/?*) is one of the parameters of KF

that needs to be tuned for successful KF implementation. It is expressed as:

** =

°l
0

0

0

0

0

0

o\
0

0

0

0

0

0

0

0

0

0

0

0

V

0

0

0

0

0

0

V

0

0

0

0

0

0

<y\

(2.45)

The update procedure of KF is implemented at a lower rate than the prediction

because IMU sensors provide data at a much higher rate than GPS (50 to 200 Hz vs. 1

Hz). GPS-derived accurate positions and velocities are excellent external measurements

for updating the INS, thus improving the applications' long-term accuracy. The INS in

an integrated GPS/INS system is responsible for interpolating position between updates

(short-term positioning component) as well as providing attitude information [4]. This

phenomenon has been illustrated at figure 2.18 (reproduced from [4]). When a GPS

39

outage is detected the KF runs only the prediction stage. As, the GPS signal returns, it

resumes the update stage.

GPS GPS GPS GPS GPS
Update Update Outage Outage Update

: ' : Prediction | Prediction | Prediction
" A A Prediction U-

Figure 2.18: Illustration of GPS/INS data sampling and KF (in prediction and update mode).

Readers are encouraged to go through the reference [12] for more details on KF

theory, its application and related issues.

2.10.3 Limitations of KF
KF only works well under certain predefined models and sensor outputs that fit

properly. It is difficult to set the initial values for some parameters involved. An accurate

stochastic model for IMU sensors (accelerometer and gyro) that works in all cases is

also difficult to set. The performance of the inertia] sensors is directly proportional to the

sensor cost as the sensors do not conform to traditional error models [17].

The low-cost tactical or MEMS-based IMU sensors have very high and varying

drift rates. As a result, in the absence of GPS update measurement, the KF based

integration solution using a lower grade INS can degrade (during the prediction stage)

dramatically over time and follow the same exponential error trend as the mechanized

(without the benefit of KF) INS data [5,6].

The measurement covariance matrix (/?&) is of great importance to determine the

KF output. It determines how good the measurement model derived from the

measurements by IMU sensors are. The shortcoming of the KF model for GPS/INS

integration is usually due to non-modeling, mismodeling or ignoring one of the

correlated noises of IMU sensors.

Another challenge is to set the initial values for the system noise covariance

matrix Qk,k-\ as it cannot be set to zero due to the inaccurate measurements (with noise)

of accelerometers and gyros. The role of this covariance matrix Q is to define the width

of the uncertainty after each step. In other words, it determines to what extent the

predictions by the KF can be trusted. A large value of Q enlarges the uncertainty and

40

results in a noisy estimate while a smaller Q results in a smoother estimate. A correct

value of Q is critical for achieving practically sound KF outputs as it depends on factors

such as system dynamics and sensor noise level. Thus the requirements to tune KF

parameters (Q and Rk) pose a challenge in GPS/INS integration [19].

2.11 I ML) data preprocessing using Wavelet De-noising

The accuracy enhancement of IMU sensors to improve the navigation solution is

an important field of research [5] [6]. The short-term (high frequency) errors resulting

from the INS mechanization process (described in section 2.9 of this thesis) section can

be removed through signal processing techniques such as low-pass filtering (LPF). This

is generally effective to reduce errors with frequencies above the true motion dynamics

bandwidth. Attempting to remove noise in the true motion dynamics bandwidth with a

LPF runs the risk of compromising the measurements of the actual vehicle motion [5].

Wavelet de-noising is based on Wavelet Multi Resolution Analysis (WMRA) which

uses the Discrete Wavelet Transform (DWT). WMRA, DWT and their effectiveness on

signal analysis and de-noising over LPF technique and for other techniques constitute a

vast field of subject matter [20]. For simplicity, only a real-time implementation of this

technique used on IMU sensor data will be discussed in this section.

The DWT of a discrete time sequence x(n) is expressed as [6]:

c/,t =2 (~ / / 2) 2>(nM2- ' t t -&) (2.46)

Where,

if/ (n) is the wavelet function

2(~i/2)y/(2~Jn-k) is the scaled and shifted version of \|/(n) based on i and j

j and k scaling and shifting coefficients which are always an integer

For different scaled and shifted versions of y/{n), Cj,k represents corresponding

wavelet coefficients. The original signal x(n) can be generated from the corresponding

wavelet function [20]:

x{n) = YLCuu¥,An) (2.47)
j k

41

The WMRA can be implemented using a bank of half-band low pass and half-

band high pass discrete time filters. The low-pass portion contains the low frequency

components of the signal, which are known as the approximations. The high pass

portion contains the high frequency components of the signal, which are known as the

details. The approximations and details are each down sampled to half the number of

points. With enough levels of de-composition, high frequency noise components (i.e.

white noise) can be separated from the signal. There are essentially three principle steps

in wavelet de-noising. They are: (1) De-composition of the signal with a wavelet basis

function to a chosen level; (2) Threshold the details coefficients at each level; (3)

Reconstruct the signal using the thresholded wavelet coefficients [6] [20].

— M J \

Original
Signal

IT
WTZSK\

y-.At

NTH
D,

J.D3

D7
-••'2>,V

De-noised
Signal

I = Wavelet Coefficient Thresholding
Figure 2.19: Illustration of the three steps of Wavelet De-noising Procedure a) de-composition, b)

thresholding and c) reconstruction.

To reduce the impact of short term (high frequency) INS sensor errors, the

bandwidth of true motion dynamics are identified by spectrum analysis and a de-noising

algorithm is applied. The mathematical procedure involved for the implementation of

WMRA is illustrated in the following sub-sections:

2.11.1 Signal De-composition and Reconstruction

As shown in figure 2.19 (modified and reproduced from [6]), the WMRA builds

a pyramidal structure or an iterative application during signal de-composition. The low

pass filter and the high pass filter initially act on the entire band and gradually reduce the

signal band at each stage. In the figure, the high frequency band outputs are the detail

coefficients (D\, D2 and D3) and the low frequency band outputs are the approximation

coefficients (Al,A2 and A3). For an input signal x(ri), the approximation coefficient a^

at t h e / ' resolution is [6] [20]:

42

ajk=2'->'2^x(n)0(2-Jn-k)
(2.48)

Here, (j){n) is called the scaling function. The scaling function is similar to the

wavelet function except that they have only positive values. It smoothes the input signal

and operates in a manner equivalent to low pas filtering. The approximation of x{n) at

theyth level can be computed as [6] [20]:

;(/O=i>M0,-.(«) (2-49)

The details coefficient d^ at the y'th resolution level and detail signal gfn) are

then computed:

n

Here, y/j k (n)IS m e w a v e l e t basis function. The above steps (equations 2.48 to

2.51) are repeated for the j+\ resolution level using the approximation signal xj(n).

The original signal x(n) can be reconstructed using all the detail coefficients

obtained during the de-composition process (starting from the first de-composition level

until the last level) and the approximation coefficients of the last resolution level. The

following equation illustrates this (where the de-composition was done till 7th resolution

level)[6] [20]:
CO . / »

x(n)= 2XA/» + Z Hdi,k¥i,M)
k=-°° '= ' k=~°° (2.52)

Here, in the above equation, the first term represents the approximation

coefficient at level J. The second term represents the detail coefficients at resolution

level J and lowers [6] [20].

Each time the signal is passed through a set of filter banks it is said to have a de­

composition level of one. In figure 2.19, a level of de-composition (LOD) of 3 is shown

as the original signal has passed through 3 banks of discrete filters. These filters initially

act on the entire signal band at the small scale values (i.e. at the higher frequencies).

Gradually the band size reduces in each de-composition level/stage. In the same figure,

43

the low-scale or the high frequency band outputs are presented by the detail coefficients

iP\, D2 and D3) and the high-scale or the low frequency band outputs are presented by

the approximation coefficients (A\,Ao and A3).

2.11.2 Wavelet Coefficient Thresholding

Thresholding operation is crucial on the detail coefficients of the (wavelet)

decomposed signal to ensure the effective cancellation of the interference of noisy signal

with a minimum distortion to the sharp transition details of the true signal. Unlike, signal

de-composition and reconstruction of DWT, it is a nonlinear operation. Two

thresholding operators, the soft and the hard are proposed by Donoho, D. [21]. In hard

thresholding procedure, any wavelet coefficient with an absolute value below the

threshold is replaced by zero and coefficients with an absolute value above the threshold

are kept the same. In soft thresholding procedure, any wavelet coefficient with an

absolute value below the threshold is replaced by zero as like the hard threshold

procedure. But the coefficients with a magnitude above the threshold are reduced or

shrunk in value by the threshold value. These procedures are expressed in the following

table (after [21]):

Table 2.3: Wavelet coefficient (hard and soft) thresholding equations.
Hard thresholding equation

Soft thresholding equation

[OJ if |y |<r

{y-T.sign(y)) if \y\>T
th{y) = \J S J

1 0 \if \y\<T

Here, T is the threshold value. The same value of T can be applied to detailed

coefficients of every de-composition level assuming the original signal is affected by a

white noise. Here, signQ represents the sign operator. T is selected according to the

standard deviation of the Gaussian noise (a) affecting the original signal and the length

of the observations/samples of the original signal (N) [6][21].

T = afi^N (253)

The standard deviation can be estimated from the median of its finest scale

wavelet coefficients, provided that x(t) is piecewise smooth [6][21]:

44

G ~ Med(\x(t)\)
0.6745 ^ " (2.54)

Med(|x(f)|) is the median value of the sequence x(t) which is actually the detail

coefficients of the finest resolution level.

Now, in case of the noisy components of the original signal are not white

(colored signal which is mostly the case with raw data of IMU sensors), the Gaussian

noise (a) is estimated adaptively in each level of de-composition.

T = Aj*.j2\og(N/V) (255)

Here, j is the de-composition level and Xj is a level dependent relaxation factor.

In the orthogonal wavelet de-composition, the detail coefficients decrease with the

increase of levels, Xj is used to achieve a balance between the cancellation of noisy

components and distortion to the signal details. A simpler version of the soft

thresholding technique assumes Xj to be equal to 1. In each level of de-composition, the

number of detail coefficients is halved (constant N divided by 21 where j is the de­

composition level number) [21].

2.12 Chapter Summary

This chapter presented the principles of GPS operation and errors related to

vehicle navigation. It then focuses mainly on Inertial Navigation System using IMU

sensors suited for land based navigation. It defined inertial navigational equations by

introducing the related theories/concepts and mathematical notations in the sections 2.2

to 2.6. The mathematical equations and operations/techniques (mechanization, KF and

de-noising) presented in the later part of the chapter (from the section 2.7 to 2.10) are

thus based on these basic concepts and mathematical notations. Then in the following

chapter (chapter 3), a functional NCU has been built on an embedded platform using

IMU sensor data and GPS receiver data.

In summary, a minimally functional NCU using IMU sensor data and off-the-

shelf GPS receiver executes these techniques in the following order as presented in this

chapter and as have been chosen to implement on a low cost embedded platform in order

45

to provide a navigational solution in conjunction to an existing GPS navigation

technology (during a GPS outage) on a land vehicle:

a) Pre-processing of low-cost IMU sensor data:

• Wavelet de-noising.

b) INS mechanization:

• Correction of raw data for known or estimated errors (bias and scale factor

correction).

• Attitude update.

• Transformation of specific force to navigation frame of interest.

• Calculation of velocity and position.

c) GPS/IMS data fusion using 15 state KF:

• Calculate the INS error state equation

• Using the error equations, KF model equations are used for prediction and

update (if GPS data is available) stages to enhance the reliability of the INS

solution.

46

CHAPTER 3: Implementation Methodology

Chapter 3 begins with short summaries of the embedded system platform's

components i.e. FPGA chip, the corresponding board and the Xilinx MicroBlaze soft

core processor (SCP) that runs on its fabric— used in the implementation. Afterwards,

the design and development of the hardware and the software components for

implementation are detailed. The IMU sensor data set used to establish a navigational

application implementation is presented in this context.

3.1 Hardware/Equipment Setup

Figure 3.1 shows the hardware/equipment setup in the form of connection

between PC and the FPGA board that has been used to do the experiment to emulate the

implementation methodology. The parallel cable was used to download the bitstream of

FPGA configuration (generated by Xilinx EDK software tool on the PC) to the FPGA

through its JTAG interface. The Serial cable was used to establish the data

communication between the PC and the serial port of the FPGA.

Figure 3.1: A snapshot of the hardware/equipment setup for the implementation.

3.1.1 Development Boards
An FPGA (Field Programming Gate Arrays) is a semiconductor device

containing programming logic components called "logic blocks" as they are

47

interconnected through horizontal and vertical routing channels. FPGAs are used for

prototyping any design as they offer great flexibility in design procedure.

The Spartan-3 Starter Board developed by Digilent Inc. was used primarily in

this thesis which provides a development platform containing the Spartan-3 FPGA of

Xilinx. It features Spartan-3 XC3S200 FPGA (containing 200 thousands gates) which is

clocked by an onboard oscillator operating at 50 MHz, IMiB asynchronous SRAM, a

UART (serial port) interface, a JTAG port, a VGA display port and several other (PS/2

port, expansions slots, dipswitches, pushbuttons etc.) on-board I/O devices. Thus it can

hold from a simple logic circuit to an embedded processor core [22]. It ships with a

power supply and a programming cable and an adapter to power the board. The

hardware designs were downloaded to the FPGA via the onboard JTAG interface.

Even though, the board comes with lots of features and peripherals most of the

resources were not used as illustrated in figure 3.2. A final navigation solution on a

platform with just only three hardware components of the board as shown in figure 3.2 is

expected to be cost-efficient.

displays

Figure 3.2: Block diagram of S-3 Board (resources used have been shaded)

Apart from the Spartan-3 XC3S200 FPGA chip of the Spartan-3 Starter board,

the following onboard features are used in the implementation:

• 1 MiB of SRAM for storing programs.

• UART interface for output.

• JTAG interface to download the bitstream.

48

At the later stage of the implementation, in order to make the code run faster,

Xilinx University Program (XUP) Virtex-II Pro Development Board was used as the

FPGA chip with more high-speed block ram (BRAM) memory resource. It is an

advanced hardware platform (compare to Spartan-3 Starter board) consisting of a high

performance Virtex-II Pro FPGA surrounded by a collection of peripheral components.

In this thesis, apart from its FPGA chip resources (specifically its increased size of

BRAM), the serial port, the JTAG port and the digital clock are used [23].

3.1.2 Serial Cable

Serial port interface is simple, low-cost and comparatively low-speed interface to

establish data communication between PCs' (also known as terminal equipment) and

other devices (also known as communication equipment). Two RS-232

transceivers/voltage level translators are available in the S-3 board. One (labeled J2 on

the S-3 board) connects directly to the FPGA chip by way of 9-pin header of female

DB9 connector. It can be accessed by simply implementing a UART in the FPGA fabric.

A standard straight-through serial cable (male-female) is used to connect the FPGA

board (which has female DB9 connector) to the PC's serial port known as COM1 or

COM2 (which has male DB9 connector) [22].

3.1.3 Parallel Cable IV

A Xilinx Parallel Cable IV (known as "Digilent Low-Cost Parallel Port to JTAG

Cable") is used to connect the parallel port of a PC to the JTAG port of the S-3 board.

This single cable comes with the S-3 board and allows users not only to download the

bitstream from the PC through parallel port to the FPGA chip through the JTAG

interface but also to debug FPGA implementation. In the same way, to configure the

XUP Virtex-II Pro Development System externally through USB JTAG interface the

embedded Platform Cable USB (supplied with the board) is used. Readers are

encouraged to consult references [22] and [23] for more details on FPGA, serial port and

parallel port.

49

3.1.4 Terminal Program

The application "Hyper Terminal" and/or "Terminal VI.9B" for Windows were

used to retrieve data sent from the S3 and V-II Pro boards through the serial cable.

The terminal program lets a computer (PC) connect to other computer, internet

telnet sites and host computers using a modem, a null modem serial cable or a network

connection. In the implementation, both Hyper Terminal (comes with included with

Microsoft Windows OS) and/or Terminal VI.9B (a freeware) was used as the interface

to the FPGA board. Through the serial cable connecting to the COM1 port of the PC

Data can be sent to the FPGA and receive back and display them on the Hyper Terminal.

The terminal program settings for use with these projects are given in the table below.

Table 3.1: Terminal program settings used for retrieving data from FPGA boards.
Baud rate
Data bits

Parity
Stop bits

Flow control

115200 bps
8 bits
None
1 bit

None

3.2 Embedded Platform

This section starts with a description of the tool used (to implement the

embedded system) in this thesis namely Embedded Processor Development Kit (EDK)

developed by Xilinx. Before downloading the bitstream, it synthesizes the

microprocessor hardware design, maps it to target FPGA chip and generates the

bitstream. A brief description of MicroBlaze soft core processor (SCP) is then presented

with its different bus connectivity and functionality. Finally, the different peripherals

that were used to develop navigation algorithms on MicroBlaze processor have been

described. Readers are encouraged to consult references [24] and [25] for more details.

3.2.1 Development tool Xilinx EDK

Xilinx Embedded Development Kit (EDK) is a development environment where

the hardware is instantiated as different IP-blocks connected via buses and signals to

develop embedded processors such as MicroBlaze and PowerPC. The software is

developed on top of the generated libraries of the hardware design. It provides a

50

framework for designing hardware/software components of embedded processor

systems on programmable logic fabric of FPGA. It includes an integrated development

environment (DDE) with a GUI named Xilinx Platform Studio (XPS). It is used to design

a complete embedded processor system for implementation specifically on Xilinx FPGA

device [25].

The EDK contains the following tools [25][27].

Xilinx Platform Studio (XPS) Tool Suite which is a graphical IDE and command

line support for developing and debugging HW/SW platforms for embedded

applications. By compiling the software and implementing the hardware, XPS acts as a

graphical front-end. It also has design wizards to configure the embedded system

architecture, buses and peripherals

Software Development Tools for MicroBlaze and PowerPC which include GNU

C/C++ compiler and debugger, Xilinx Microprocessor Debug (XMD) target server,

Data2MEM utility for bitstream loading and updating, Base System Builder (BSB)

configuration wizard and Platform Studio SDK (Software Development Kit) software-

centric design environment based on Eclipse IDE etc.

The EDK also contains stand alone Board Support Packages (BSPs) for non-

RTOS systems of MicroBlaze and PowerPC. It also contains BSPs for different RTOSs

namely Wind River VxWorks and Embedded Linux (running on PowerPC) and support

for Xilinx MicroKernel (XMK) Systems.

3.2.2 MicroBlaze Soft Processor Core

As mentioned in chapter one, one of the motivations behind using soft processor

core (SCP) on a FPGA lies in its low-cost. A MicroBlaze SCP costs US $0.48 whereas

any other microprocessor (found inside a PC) costs in the order of hundreds of dollars.

Moreover, the FPGA chip price which is below US $2.00 with more than 100K gates

system (such as Spartan-3 FPGA) makes it a feasible and cost-effective embedded

platform to be used in applications related to automobile navigation [26].

Microblaze microcontroller is an integrated solution intended for implementation

of an embedded controller in the FPGA. A soft core processor (SCP) like MicroBlaze is

51

downloaded into the FPGA chip as bitstream format. In contrast to hard core processors

like most other processors (IBM's PowerPC, Intel's Pentium etc.) which are real

physical processors. The MicroBlaze SCP embedded over FPGA fabric (i.e. as the

bitstream is downloaded on it, a processor is created out of the configuration logic bloc)

is a 32-bit Harvard architecture processor which has physically separate storage and

signal pathways for instructions and data with an instruction set provided by Xilinx. The

MicroBlaze embedded soft core is a Reduced Instruction Set Computer (RISC)

optimized for implementation in Xilinx Field Programmable Gate Arrays (FPGAs).

MicroBlaze is configurable as it allows the users to select a specific set of features

required by their design. The processor's fixed feature set includes 32-bit general

purpose registers, 32-bit instruction word with three operands and two addressing

modes, 32-bit address bus and single issue pipeline [24].

IVf:

Block RAM 1

1 ' - I I VJ

L i - j ' 1~<J: iL i i j ; Lv.:j

S

L j

- t^L '2

iLva

63.
IL.J

J—J..

T—\- -1

^
"—7-1
i L i j

j • 1! ' — ; T I

| L . J IL-J

•%1

IE2
rj-\.

u , „ -ii, '—T..1. i~T:"l
: Li J ' L ' J 1 ! L j

J " '

S3 1

m
W: j

1 I

^jjjgg

p-fli itl
i^tH tUT?

Clock-

D F I i p j i E l Flip
Flop;

"A'gerieric single Logic
Block/Slice of a FPGA

^LMBBuS'

External SRAM

BRAM it jMicroblazf;
WE

KOPB:
:P!EMC:';

Routing
Channel

'j^M^>te^!MS^J-M~Z- -
I/O Blocks'

Generic Gate Array
fabric/architecture

' W
WDTJimer'

OPBBuS;:

UARTi
JTM
;:MDM*

FPGA Board taDnc/arcnitecture MicroBlaze S C P and its peripherials on FPGA fabric

F i g u r e 3 .3 : An illustration of the embedded platform used in this thesis work.

MicroBlaze supports three interfaces with separate bus interface units for data

and instruction accesses. They are Local Memory Bus, On-chip Peripheral Bus and

Xilinx Cache Link. Local Memory Bus (LMB) provides single-cycle access to on-chip

dual-port block RAM. IBM's On-chip Peripheral Bus (OPB) interface provides a

connection to both on-chip and off-chip peripherals and memory. Xilinx Cache Link

52

(XCL) includes up to 8 Fast Simplex Link (FSL) ports, each with one master and one

slave FSL interface [25].

In addition to the static features, the MicroBlaze SCP is parameterized for

additional functionalities such as: On-chip Peripheral Bus (OPB) data side interface, On-

chip Peripheral Bus (OPB) instruction side interface, Local Memory Bus (LMB) data

side interface, Local Memory Bus (LMB) instruction side interface, Hardware barrel

shifter, Hardware divider, Instruction cache, Data cache, Hardware debug logic, Fast

Simplex Link (FSL) interfaces, Machine status set and clear instructions, Cache Link

support, Hardware exception support, Pattern compare instructions, Floating point unit

(FPU), hardware multiplier etc. [24]

3.2.3 MicroBlaze Processor peripherals

The EDK tool allows users the ability to connect MicroBlaze with large number

of commonly used peripherals available in the EDK peripheral libraries. It also allows

users to implement custom peripherals functionality not available in the EDK peripheral

libraries. These peripheral devices are connected mainly through its OPB bus and also

through LMB bus.

The LMB is a fast local bus with separate read and write data buses. It is a single

master bus and unlike IBM's OPB bus it requires no arbiter. It connects MicroBlaze

instruction and data ports to high-speed peripherals, primarily BRAMs. The LMB

provides single-cycle access to on-chip dual-port block RAM. Separate instruction and

data cache units can be enabled. ILMB (Instruction side Local Memory Bus) and DLMB

and (Data-side Local Memory Bus) are connected to the dual-port BRAM. This memory

is also used for bootloop storage.

SRAM on the S-3 Board is connected through an External Memory Controller

(EMC) module with the OPB bus of MicroBlaze processor.

JTAG port was used for transferring the bitstream as well as the ELF (execution

and linking format) file containing the software architecture to the SRAM. It is also used

for debugging. Microprocessor Debug Module (MDM) on the OPB bus is used for

JTAG-based debugging.

53

A free-running Timebase and Watchdog Timer peripheral is attached to the OPB

bus. One of the purposes of using this is to measure/calculate the number of clock cycles

required to execute a certain portion of code/instructions on a MicroBlaze platform.

RS232 serial port on the S-3 Board, connected to a UART peripheral on the

processor OPB bus of MicroBlaze, are used as standard in and standard out devices.

MicroBlaze SCP has one interrupt port and it can be connected to the peripheral

that requires it. An interrupt controller peripheral is required for handling more than one

interrupt signal. On interrupts, MicroBlaze jumps to address location 0x10 which is part

of the C runtime library and contains a jump to the default interrupt handler. This

function is part of the MicroBlaze Board Support Package (BSP), which is provided by

Xilinx.

3.3 Hardware Platform Development

"Hardware platform" is a term used by Xilinx to describe the embedded

processing subsystem created using EDK tool according to the need of the application

being implemented. The hardware platform consists of one or more processors and

peripherals connected to the processor buses. EDK captures the hardware platform in the

MHS file (Microprocessor Hardware Specification). It allows the users to customize the

hardware logic in the processor subsystem [25]

3.3.1 Building processor core
The Base System Builder (BSB) wizard of EDK tool helps users to quickly build

a working system targeted at a specific development board. It was used to develop the

hardware platform as the target of the software code of navigation application developed

in this thesis. Instead of adding any embedded Operation System (embedded OS like

XilKernel, ucLinux etc.) on top, a standalone platform has been chosen to keep the

functionalities simple.

MicroBlaze running at 50 MHz with FPU unit option enabled was chosen as the

processor for the hardware platform for Spartan-3 Starter Board. The LMB BRAM

interface controllers only support power of 2 sizes (e.g.8KiB, 16KiB, 32KiB, 64KiB,

etc.) and the Spartan-3 Starter Board can be configured with up to 16KiB of BRAM. The

54

navigation application code for (2D, 3D Mechanization, KF and wavelet de-noising) was

found to be too large to fit in the on-chip BRAM. The external memory (1 MiB of

SRAM) available on the Spartan-3 Starter Board (shown in figure 3.2) for storage of the

code (both instruction and data) was included with the hardware platform design. It was

connected to the OPB bus of the MicroBlaze processor through an OPB External

Memory Controller (EMC) unit. While using the external memory, only 8KiB BRAM

resource was used for storing the bootloop information and software stack/heap data and

the rest of the BRAM resources were configured for caching the external memory. Up to

4KiB of OPB Instruction Cache and 8KiB of OPB Data Cache were enabled with

available BRAM resources of the Spartan-3 Starter Board to accelerate the code

execution from the external memory (connected to MicroBlaze through OPB bus).

With the XUP Virtex-II Pro board, the processor was configured with 64KiB

BRAM as it successfully accommodated the decentralized KF code (developed in C)

within 64KiB BRAM configuration. As a result, no external memory (and of course no

caching) was required to configure with the hardware platform. MicroBlaze has been

configured with 100.00 MHz clock frequency as it contains faster DCM. Also, the FPU

option was enabled. Unlike Spartan-3 Starter board, the BSB wizard of Xilinx EDK does

not contain the XUP Virtex-II Pro Board Definition file by default. It was downloaded

from the manufacturer Digilent Inc.'s website [23].

RS-232 serial port with UART LITE IP (included with the BSB tool) was

configured as STDIN and STDOUT for the MicroBlaze running on both the boards with

parameter set according to the PC's terminal program shown in table 3.1. For both

boards, hardware debug module was enabled.

3.3.2 Measuring the timing performance

Number of clock cycles spent/used by software code running on MicroBlaze was

measured using a watch-dog timer connected to the processor's interrupt port. Software

intrusive code profiling is supported by the MicroBlaze and for this GCC/GPROF tools

are provided with EDK. But, to enhance the accuracy of the measured clock cycles, a

watch-dog was used instead as illustrated in figure 3.4.

55

WDT interrupt starts
(registering the clock count = tx)

WDT interrupt ends
(registering the clock count = te)

C source code

Figure 3.4: Illustration of the measurement of clock cycles (fe-fs) to execute a certain portion of C code on
MicroBlaze.

Unlike PowerPC, MicroBlaze SCP does not have a time-base register inside the

processor that works with the system clock. A watch-dog timer (WDT) was attached like

a 32-bit peripheral with the OPB bus that contains a time-base register. While building

the processor core using the Base System Builder (BSB) wizard of EDK, the TimeBase

WatchDog Timer (TBWDT) was chosen as a peripheral with interrupt option. Thus, an

interrupt signal is provided that pulses high for one clock period as the time-base counter

rolls over from OxFFFFFFFF to 0x00000000. Interval length/count bit option for the

timer was chosen as 31 bit (the maximum possible length) and the option for "WDT can

be repeatedly enabled/disabled via software" was selected.

3.4 Software Coding

In this section, the details associated with the C coding (on MicroBlaze platform)

of the navigation algorithms are described.

The software coding of the navigation application (derived from the theoretical

understanding/research shown in chapter 2) was carried out mainly in three phases. In

the first phase, 2D, KF and wavelet de-noising (applied on EVIU raw data) model was

created in Matlab environment. To this end, a working 3D Mechanization Matlab model

provided by Advanced Navigation and Instrumentation (ANI) Research Group of Royal

Military College was used [28]. Then from the Matlab environment, the coding was

carried out in Microsoft Visual Studio environment using C programming language. At

the final stage of the coding, the debugged and validated code (with respect to the

wwwwwwwwwww
wwwwwmraww

wwwwwwwwwwwwwww
wwwwwwwwww
w w w w w w w w w

w

wwwwvrarwwwwwwwww
wwwwwwwwww

56

Matlab models) from Microsoft Visual C environment was ported to the MicroBlaze

environment.

As mentioned before, an existing 3D Mechanization Matlab model was supplied

by ANI research group [28] along with the GPS and corresponding IMU sensor data in

ASCII format. The existing 3D Matlab model was extended to a working KF model that

was capable of providing a position error of just above 30 meter in the case of a 20

seconds GPS outage. By tuning and tweaking the initial parameters (such as covariance

values of update position and velocities of GPS and the co-variances of the INS error

states) this result could have been improved and the created Matlab model could have

been validated by measuring its performance during numerous forced GPS outages.

Wavelet de-noising and thresholding algorithm was developed in C and the plots

showing de-noised IMU data (operating in real-time mode) were obtained (shown in

figures 4.10 and 4.14 of chapter 4). However, its improvement in the solution domain

could not be validated as the developed KF using de-noised data could not provide better

result. As the data set for the KF was changed (from noisy data to de-noised data), the

KF parameters were changed as well. The parameters could not be successfully tuned

and tweaked in the way it was done for the noisy data set (of a specific forced outage

shown in figure 3.7). As mentioned in reference [18] about the limitations of KF: "It

requires a human expert to tune the optimal parameters of the Kalman filter (i.e. Q and R

matrices). In addition, these parameters are sensor dependent."

As the focus of the thesis is to verify the feasibility of navigation algorithms on

embedded platform and analyze its performance, a KF model implementation with an

acceptable error margin for a single forced GPS outage is shown in chapter 4. For low

end tactical grade, KF should be able to provide 20 m position errors maximum during

20 sec outages [29]. Thus the development of a fully functional KF model working

perfectly for any outage (and providing better results on de-noised IMU data) can be

considered as a future extension of the research.

TG6000 EVIU's gyro's output data are in degree format. To facilitate the

trigonometric operation, gyro data were converted from degree to radian. In the same

57

way, accelerometer sensors' raw data were transformed from gravitational acceleration

unit ('g' unit) to m/s~.

The IMU data file was supplied with bias and scale factor values for each gyro

and accelerometer sensor. As illustrated in table 2.2 of the thesis, these values were

obtained in a laboratory environment. After unit conversation, the bias and scale factor

convertion was carried out for each sensor's output at every time interval. To illustrate

this fact, a module titled "Bias and Scale factor correction with Unit Conversion"

was added with the block diagrams of 2D, 3D Mechanization and KF (figure 2.10, 2.17

and 2.18 respectively)

The initial position and velocity before the GPS outage were obtained using the

corresponding GPS position and velocities. The initial heading of the vehicle was

determined using the incremental GPS latitude and longitude values just before the

outage. For simplicity and assuming that vehicle was running on a smooth road surface,

the roll and pitch values were initialized to zero.

Off the shelf
GPS receiver

lat, Ion, alt.

V, V, V°

Digital Map
Watching using

the stored
database and
Digital Display

Figure 3.5: Block diagram of current/existing Automobile Navigation Product in the Market as
portable in-car GPS device

Off the shelf
GPS receiver

Low cost
IMU sensors"

raw data

Jxijyijz

LOX, CUy, (X)2

Embedded
Navigation

Computing Unit
(NCU)

lat, Ion, alt
yeynyu

Digital Map
matching using
stored Database

and Digital
Display

Figure 3.6: Block Diagram of the Navigation solution implemented this thesis.

58

As shown above in figure 3.5, the block diagram represents the existing

navigation product available in the current market. The figure 3.6 summarizes the

implementation work (both in terms of hardware and software) carried out in this thesis.

3.4.1 Land Vehicle Navigation Data
Implementing navigation algorithms involves processing navigation data. At the

first stage of the development, the ideal scenario for a thesis/project establishing the

feasibility of using embedded processor would require simulated IMU sensor data

(accelerometer and gyro data) for a reference trajectory (with position and corresponding

velocity information at each time instance). The second best scenario would be to use

low-cost IMU sensor data collected from a field experiment.

Due to limited resources, simulated data could not be procured. A road test data

involving GPS and tactical-grade IMU namely TG6000 (KVH Industries, Inc.,

Middletown, RI) have been obtained thanks to ANI research group [28]. The TG-6000

measures angular rate and linear acceleration in the X, Y, Z axes with three fiber optic

gyroscopes and three accelerometers. The data has been provided to MicroBlaze to

perform the navigational algorithms mentioned in chapter 2.

- nlop.u. ^ c b r ' r r '

Figure 3.7: Complete map of the trajectory while the black circled location is the IMU sensor (during a
simulated GPS outage) data used.

59

3.4.2 2D Mechanization
Yaw (heading) angle was calculated in radian using the equation (2.13). Using

this value, accelerometer outputs (fx and/3,) were transformed to the local level frame in

equation (2.14). East and North velocities were calculated using equations (2.15) and

(2.16), position information was obtained as a unit conversion is applied (shown in

equation (2.23) and equation (2.24) and illustrated in the figure 2.15) to obtain the final

output in radian.

3.4.3 3D Mechanization
Using the initial attitude information, a DCM matrix is constructed as shown in

equation (2.8). This DCM matrix is then transformed to quaternion parameters using the

equation (2.6). Now, from the initial parameters of the quaternion, the parameters for the

next/current time step are obtained.

Using the new attitude parameters for the current time step, equation (2.24) and

equation (2.27) are used to obtain velocity and position domain solution respectively.

A simple second order Runge-Kutta integration method has been used to

transform the velocity increments to position increments. Instead of integrating by fixed

time step integration method (Euler integration), the output has been smoothed to an

extent in this way. The Euler integration algorithm works by assuming that the slope of a

function is constant over the period of integration. The second order Runge-Kutta

algorithm provides some compensation for changes in the slope over the integration

interval [10].

3.4.4 Kalman filter
For low-cost IMUs like tactical-grade EMU, the mechanization procedure only

gets fulfilled after combining it with a working KF Module which can be created after

tuning many sensor noise variance values.

The KF code was made to run for the first 10 seconds using the aid of GPS data

and the next 20 seconds in standalone mode. This 20s corresponds to the same forced

GPS outage as applied to the 2D and 3D INS Mechanization implementation shown in

the previous two sections. In both non-outage and outage scenario, the KF code went

60

through prediction and update stages but by using two different Error Covariance Matrix

(Rk) values as shown in equation (2.45). During the outage, a higher value of Rk matrix

was used as a higher standard deviation would decrease the KF's reliance on the Error

Measurement Vector Zk (shown in equation (2.42) and (2.43)) and, thus, increase its

confidence in the INS output.

Using the INS error equations, represented by equations (2.30) to (2.35), error

state transition matrix Ft,k-i of size 15x15 was constructed. As shown in equation (2.37),

in prediction stage, the 15 error state shown in equation (2.36) gets propagated to the

next time step by being multiplied with the 75x75 matrix. Then, using equation (2.38),

the covariance matrix of this new predicted error state (Pk~) is obtained.

In the update stage of the KF, the Kalman Gain Matrix (K^), in equation (2.41),

is obtained using the Covariance Matrix for the estimate of the Error (Pk~) and

Measurement Error Covariance Matrix (Rk).

The Kalman Gain (Ku) matrix is then used to update the Covariance Matrix for

the estimated error state (Pk) using equation (2.44). It is also used to update the

estimated error state vector xk using equation (2.40) where the Measurement Vector is

given by Zh

The Measurement Vector Zk is obtained from GPS position and velocity

measurement update as shown in equation (2.42). In the scenario of forced GPS outage,

the last available GPS data (before the outage) is used in the calculation of Zk-

The final position, velocity and attitude output of KF is obtained by subtracting

the corresponding value of the updated error state vector (xk).

At the update stage of the 15 state KF Model, a 6x6 matrix inversion is involved

as shown in the equation (2.41). To implement it, "Gauss-Jordan elimination without

pivoting" technique has been used deriving from the code snippet shown at the reference

[30] .Through debugging, it was observed that the matrix to be inverted

(HkPk7HT
k +Rk)'

1 had always non-zero elements at the diagonal. As a result of this

simplification, non-pivoting technique was chosen over pivoting technique. The

61

complexity of this computation is approximately (2n3/3). The corresponding number of

clock cycles consumed to perform the 6 by 6 matrix inversion operation is shown in

chapter 4.

3.4.5 Wavelet De-noising

One of the motivations of presenting this sliding window-based wavelet multi-

resolution based analysis and threshold is to show the real-time implementation on soft

processor based low-cost FPGA. This thesis does not focus on the details of the

accelerometer and gyroscope sensor data format (analog or digital, if digital then

whether ASCII or in 32-bit format), sensor interface and other details. However, this

module was built to verify the feasibility and to model the embedded implementation of

any de-noising algorithm for low cost inertial sensors: may it be wavelet de-noising [4]

or computation load intensive but highly effective high resolution spectral de-nosing

algorithm like FOS [3].

Further research should be conducted on the following factors related to the

optimum real-time de-noising of any accelerometer and gyroscope sensor data:

1) The non-overlapping window data length

2) Types of wavelet

3) Level of Wavelet Multi-resolution analysis: how many de-composition levels are

appropriate?

4) Different threshold algorithms for the wavelet coefficients

Two types of windowing techniques are usually employed in IMU sensors pre-

filtering technique implementation in real-time mode. They are: sliding window and

non-overlapping window [31][32]. For non-overlapping window, the data set is

portioned into sections of certain length. This non-overlapping style has been chosen due

to the low level of complexity (in computation load) associated with it. Daubechies-5

('db5') was chosen for implementing wavelet de-noising as it has been deemed

appropriate for low cost IMU sensors as used in reference [32] in real-time

implementation.

62

The optimal level of de-composition varies with the bandwidth of true motion

dynamic in each sensor [18]. The sampling rate of the IMU data used in this thesis is 75

Hz, a 3 LOD for a>x, coy mdfz data and a 5 LOD for fx,fy and coz would be appropriate

according to the results presented in references [18] and [32]. Table 3.2 (adopted from

[18]) illustrates the bandwidths of true motion dynamic sensed by different IMU sensors

and also confirms, as 25 = 32, a 5 LOD would result the finest approximation

coefficients to contain frequency contents of 0 Hz to 1.172 Hz of fx, fy and coz sensors'
"2

data. In the same way, as 2" = 8, a 3 LOD would result the finest approximation

coefficients to contain frequency contents of 0 Hz to 9.375 Hz for cox, ooy and/; sensors'

data.

Table 3.2: Bandwidth of True Motion Dynamics of IMU sensor data.
IMU

Sensors

Bandwidth

Gyro

w«

<8Hz

OJy

<8Hz

U)z

<2Hz

Accelerometer

/*

<2Hz

fy

<2Hz

/ z

<8Hz

The common thresholding methods (namely rigsure, sqtwolog, heursure,

minimaxi) implemented in the Matlab Wavelet toolbox [33] can be applied to analyze

the best possible result for low cost IMU sensors' performances and that relates to a vast

field of research [32]. In this thesis, a soft thresholding technique (shown in table 2.3) is

applied over raw IMU sensor data with the level dependent thresholding technique

shown in equation (2.52). To calculate the median of each detailed coefficients, a qsort

algorithm is used [30].

3.5 Software Design Issues

A "software platform" on MicroBlaze refers to a collection of software drivers

and the operating system (if not a standalone application, then an OS such as XilKernel

can be included) on which to build the given application. The software image created

consists only of the portions of the Xilinx library used in the embedded design. The

EDK tool captures the software platform in the MSS file (Microprocessor Software

Specification). It automatically generates the memory map of the hardware platform as

63

well as assigning default drivers to the processor and each of its peripherals. Thus, as

mentioned, the program running on the processor core is built using basic standard C

[25]. Software coding in MicroBlaze was done using basic standard C libraries and

device drivers since usually there is no operating system (known as 'standalone'

application) between the software and the hardware platform. This is the language

format supported by Xilinx Embedded Development Kit (EDK) tools. As mentioned

before, EDK includes GNU C compiler and Xilinx Microprocessor Debug (XMD)

module. The Base System Builder used for creating the hardware platform optionally

generated a software project called "TestApp_Memory" which contained a sample

application and linker script. The code developed in this thesis was built on top of this

BSB generated sample software template.

The "float.h" header file was included at the top of the .C file. Also, all floating

point variables were assigned with single precision variable type float as they

correspond to the default double in C programming language. The floating point

variables/constants declared are initialized in the following fashion:

f l o a t t e s t = O.OOf;

The above code snippet illustrates the use of/ at end of variable declaration. In

the same way, the single precision floating point supporting trigonometric functions

were used e.g. s i n f () , cos f () , s q r t f () instead of s i n () , cos () and s q r t ()

respectively to avoid any interaction with the default library implementation in double

precision floating point format.

Debugging on the application code for MicroBlaze was carried out manually in

two phases. The first phase involved application code validation. It was done by

simultaneously comparing the output of Microsoft Visual Studio environment with that

of the MicroBlaze. In the second phase, for each small segment for the code its timing

performance was obtained and improved by software code optimization. It was found

that declaring function and variables with the ' / suffix as shown above (for performing

single precision floating point operation instead of double precision floating point

operation) significantly reduces code execution time.

64

3.5.1 Data I/O

The EDK libraries contains reduced version of standard C functions for I/O, such

as print(), xil_printf() suited for embedded processors due to the limitation of hardware

area as opposed to desktop PC environment. This reduced version of I/O functions in

size (only IKiB) does not offer support for floating point numbers [34]. Moreover, the

xil_printf() included in the "stdio.h" header file treats every floating point values as

double. Usually, C converts float to double before passing it to a variable argument of

any function. It was found that "%/' expects a double, not a float, as it always was

converted before the call.

To overcome this problem, a snapshot of the memory content (i.e. performing a

direct read of the memory content) is printed using the existing xil_printf() function.

Following code snippet represents a typical scenario:

float test = 22.002f;
xil_printf("test = 0x%08x\r\n", * (int*)&test);

Here, the 08x forces "%x" to print at least 8 character which is equivalent to 32

bits. The float variable test is typecast to integer as floats and integers on the MicroBlaze

are of the same size (4 bytes). Additionally, the reduced xil_printf() function on

MicroBlaze provides full support for integer numbers. So, the value in memory is the

same. A Matlab script was created to read each of the 8 ASCII character outputs (in

Hexadecimal format) from the terminal, to translate it to the corresponding 32-bit

representation (1 's and O's) and eventually to the corresponding IEEE-754 floating point

decimal value for results analysis as performed in chapter 4.

By using a custom function instead of using the standard I/O functions of the C

library, the code size could have been further reduced.

3.5.2 Run time errors

Due to the large code size of KF model, several run-time errors were

encountered. They are described here.

In the process of debugging it was observed that after running a certain length of

the code, all the variables values were turned into garbage values indicating a (negative

or positive) overflow. After attempting different approaches to detect the reason and

65

overcoming the situation, it was found that an increase of stack size from the default size

in the linker script resolves the issue. From this, it was concluded that a stack overflow

caused run-time error.

Another run-time error that occurred while implementing KF model was related

to memory management. As the KF model includes several matrix variable declarations

as large as 15x15 dimensions, the 2D array declaration for them as local variable was

generating run-time error. To overcome this situation, double pointers were used with

initialization using malloc() function. Another approach could have been using global

variable declaration and thus avoiding the use of local variables.

66

CHAPTER 4: Results and Discussion

Chapter 4 presents the result of the embedded implementation described in

chapter 3. It starts with examining the embedded application outputs (of navigational

algorithms) by comparing them with those performed on a desktop PC (Matlab models

running on Pentium micro processor) platform using Matlab tool. Then it discusses the

timing performance of the embedded navigational application. Finally, the chapter

outlines the hardware utilization summary of the embedded software.

4.1 Navigation Solution using MicroBlaze

4.1.1 2D Mechanization
Figure 4.1 and 4.2 show the position output comparison between Matlab model

and MicroBlaze computation of 2D Mechanization for land vehicle experiment position

results during 20s forced GPS outage. Figure 4.1 brings out the precision issue related to

32-bit floating point representation. It shows that due to large dynamic range, a position

increment of a moving automobile in every (1/75) second in east and north direction is

too small to be added to a large latitude and longitude quantity respectively.

44.648

44.646

44.644

Matlab Output
MicroBlaze Output

TO
CD
T>

44.642

44.64

^ ^

^
* * *

44.638**1" ;

3500 3505 3510
time

Figure 4.1

3515 3520

: Latitude output comparison of
Mechanization.

2D

-76.2532

-76.2534

a? -76.2536

« Matlab Output

MicroBlaze Output

-76.2538 [4 v * -j

-76.254 ;-
3500 3505 3510 3515 3520

time
Figure 4.2: Longitude output comparison of 2D

Mechanization.

Moreover, in latitude and longitude calculation, the reference points are on

Equator (zero latitude) and on Greenwich Meridian (zero longitude). The navigation

67

trajectory data [28] used was collected from road test conducted around Kingston city,

Ontario, Canada and this location is far away from the Equator line and even further

away from the Greenwich Meridian line. From figure 3.6 it can be said that during the

forced GPS outage, the vehicle was heading towards North. Thus the change of position

towards East-West direction at every (1/75) second was too little compared to the large

distance from the Meridian Line. Adding a very large number to an extremely small one

produces no significant change in computation as evident in figure 4.2. In contrast, in

figure 4.1, even though there is an accumulated error growth, at least, the effect of the

addition computation is visible.

Starting experiments in a new embedded platform with the simplest algorithm

such as 2D Mechanization thus proved helpful to get introduced to a precision related

issue in navigation solution computation. To overcome this situation, a localized

reference point (resulting a smaller distance) was used that can be easily added to the

smallest possible east and north position increments calculated.

4.1.2 Mechanization and Kalman filter
Velocity East Velocity North

-4UL— - ' ' l - - : /fc>l- l — L L - -- J

3500 3505 3510 3515 3520 3500 3505 3510 3515 3520
time (s) time (s)

Figure 4.3: Velocity East (V) output of 2D, 3D Figure 4.4: Velocity North (V") output of 2D, 3D
Mechanization and KF. Mechanization and KF.

Figures 4.3 and 4.4 show the velocity output plots of the 2D, 3D Mechanization

and KF code running on MicroBlaze platform. The improvement of the performance

(with respect to the reference GPS output) of 3D Mechanization over 2D Mechanization

and that of KF over 3D Mechanization is evident.

(

68

Figure 4.5 and 4.6 demonstrates the performance of the KF in position domain

with respect to the reference GPS (during the forced GPS outage). Position Error Plot as

a function of time in North and East direction show the error growth as the time

progresses. From these two position error plots, it can be deduced that (for this specific

forced GPS outage) the total horizontal error is approximately 30 m

(Vl4.81682+28.05882 = 31.73061)

Error Plot - GPS reference vs. MicroBlaze KF output Error Plot - GPS reference vs. MicroBlaze KF output
15- - -i . T- M 30 r

Q)

£ 10

o
Z
c:
o

o
Q.

3520 3510
time (s)

Figure 4.5: MicroBlaze output: Position North
Error (in meter) with respect to GPS reference.

3510 3515 3520
time (s)

Figure 4.6: MicroBlaze output: Position East Error
(in meter) with respect to GPS reference.

Figures 4.7 and 4.8 show the error plots between the computations carried out in

Matlab Model and MicroBlaze. The reasons for the differences of the outputs can be

described as follows.

In MicroBlaze platform, the computation was carried out in single precision (32-

bit) floating point format compared to double precision (64-bit) floating point format

used in Matlab which was running on desktop PC. In Matlab model, computing INS

error equations in KF require absolute latitude (resulting from 3D Mechanization

computation) values at every time instance. However, computation carried out in 32-bit

platform cannot support the dynamic range of adding a very small latitude update (in

every 1/75 second) to a very large initial latitude value (as described previously and

shown in figures 4.1 and 4.2). To circumvent this scenario, the (absolute) latitude update

in radian was carried out in every one second instead of every 1/75 second so that the

69

update value accumulates to a sufficiently large value enabling it to support the dynamic

range of single precision floating computation. This different update method influences

the Earth's radius (equation (2.2) and equation (2.3)) and gravity update (shown in

equation (2.4)) computations.

Error Plot - Matlab Model vs. MicroBlaze Output
0.2.

Error Plot - Matlab Model vs. MicroBlaze Output
0.012,

3510 3515 3520
time (s)

Figure 4.7: MicroBlaze vs. Matlab model output
comparison - Position North Error (in meter)

3510 3515 3520
time (s)

Figure 4.8: MicroBlaze vs. Matlab model output
comparison - Position East Error (in meter)

Figure 4.7 and figure 4.8 show the overall position error/difference derived

between Matlab outputs and MicroBlaze results is negligible as the overall error value

here is 3.8 cm (Vo.01022 +0.19572 = 0.0384).

4.1.3 Wavelet De-noising

From examining the de-noised time domain plots (in figure 4.10 and figure 4.14)

and PSD plot (figure 4.11) of de-noised signal, the de-noising effect of the algorithm

implemented on MicroBlaze (even though there is no error free reference of IMU data)

becomes apparent. In the above figure 4.9 and figure 4.10 and in the PSD plot of figure

4.11, only the data corresponding to Y-axis accelerometer is shown for the period of

forced outage period of the trajectory (from 3500 second to 3520 second). This is

because, being the sensor which detects the forward motion of the vehicle, the Y-axis

accelerometer would provide data that is generally representative of the vehicle's overall

motion dynamics.

70

0.5
IMU raw data signal wavelet de-noised signal

0.3,

<\i

O)
1

Milt i J

0.2;

^ °-1

-0.5'
3490 3500 3510 3520

Time(s)
Figure 4.9: Raw time domain signal of 7-axis

accelerometer.

-0.1

-0.2'•
3490 3500 3510 3520

Time(s)
Figure 4.10: Wavelet De-noised time domain

signal of y-axis accelerometer.

By examining the PSD plot of figure 4.11, it can be said that Wavelet De-noising

on Y accelerometer data carried out on MicroBlaze SCP is not only able to attenuate

short-term errors existing beyond 2Hz, but it can also reject part of the long term errors

present in the spectrum below it.

f Frequency Domain

10

10'

W 10"

10
-6

wavelet de-noised
noisy

lo-1
__._L_ __l J !.._..:..._.!_._

10
Frequency (Hz)

Figure 4.11: PSD of y-accelerometer data using Wavelet De-noising.

The error plot of figure 4.12 clearly proves that Wavelet De-noising algorithm on

low cost IMU data with high sampling rate (75 Hz in this case) can be successfully

implemented on MicroBlaze SCP using its floating point hardware unit.

71

x 1 0 "
12

10

8 ^ • -

6

(NT"
45 4

D) 2 !-.- J -
^ U |.!. !

-6 -
3490

Error Plot: Matlab vs. MicroBlaze

^ W - t o ^ ^

3495 3500 3510 3515 3520 3505
Time(s)

Figure 4.12: Error Plot - comparison between wavelet de-noised data outputs from Matlab and
MicroBlaze

Figure 4.10 and figure 4.14 shows the visual effect of lowering the LOD of

wavelet de-noising algorithm from 5 to 3.
IMU raw data signal

-0.6,

-0.7;

-0.8

^ -0 9
6
3 - i !

-1.1

-1.2

-1.3!—

— t

i

- • • • !

i * 1 1

T "" i

1

-0.8

-0.85

-0.9

-0.95

-1

-1.05

-1.1

-1.15

wal let de-noised signal

- 1 . 2 L ' ' ' - - - i 1 1
3490 3495 3500 3505 3510 3515 351 3490 3495 3500 3505 3510 3515 35!

Time(s) Time(s)
Figure 4.13: Raw time domain signal of Z-axis Figure 4.14: Wavelet De-noised time domain

accelerometer. signal of Z-axis accelerometer.

4.2 Timing Measurements

Three different MicroBlaze configurations (using the BSB wizard of EDK tool)

were implemented as the target of a software navigation application. In configuration 1,

72

the code executed entirely from the external SRAM. In configuration 2, 4KiB of

Instruction cache and 8KiB of Data cache were enabled. In configuration 3, the entire

application code ran from on chip BRAM of size 64 KiB. As the Spartan-3 Starter Board

had only 24KiB of BRAM, the XUP Virtex-II Pro Board was used for configuration 3.

Contrary to configurations 1 and 2 (both operated at the clock speed of 50MHz),

configuration 3 operated at the clock speed of 100 MHz. In all three configurations, the

stack/heap section of the code was kept at the BRAM section (along with the bootloop

code for MicroBlaze).

The number of clock cycles taken/needed to execute the C code of following 4

algorithms (for a single iteration) is shown below. In contrast to the 2D and 3D

Mechanization algorithms, both KF and matrix inversion algorithm uses loop operations

intensively and it suits cache operation well (as it is shown in table 4.1).

Table 4.1: Timing results for 2D, 3D Mechanization and KF operation.

2D Mechanization
3D Mechanization
Decentralized KF
(6x6 matrix inversion)

Configuration 1
(clock cycles)

1772
51937

1843305
(50940)

Configuration 2
(clock cycles)

1732
37646

619191
(12232)

Configuration 3
(clock cycles)

390
9471

420236
(11021)

It should be noted that the entry corresponding to 2D Mechanization

implemented via Configuration 3 in Table 4.1 is italicized. The italicization highlights

the fact that the code for 2D Mechanization could be run from 16KiB BRAM available

on Spartan-3 Starter Board (i.e. there was no need to use the external IMiB SRAM). In

order to accommodate this code within this small memory limit, the calculations

involving updating of Earth's Radii shown in equations (2.2) and (2.3) and gravity

shown in equation (2.4) were omitted. Rather, these variables were assumed to be

constant during this forced GPS outage period of 20 seconds. This assumption was

extended to the 2D Mechanization performed by the other configurations to ensure that

the timing output of all three configurations remain can be compared to each other. On

the other hand, in the cases of 3D Mechanization and Decentralized KF, the

73

abovementioned variables i.e. Earth's radii and gravity were updated at the sampling

frequency for the purpose of reporting timing performance of table 4.1.

The benefit of using Instruction and Data cache for external SRAM (which is

connected through OPB bus of MicroBlaze) is clearly evident from table 4.1 and table

4.2. Configuration 1 can support up to IMU data rate 27 Hz (1843305 clock cycles)

which is not fast enough to match the data rate of most of the MEMS based IMU sensors

available in the market. By enabling the OPB cache option, up to 80 Hz (619191 clock

cycles) data rate can be supported. By adding extra BRAM to the FPGA chip of Spartan-

3 Starter board, the code can support up to 119 Hz data rate. Here, the application code

in configuration 3 can support (119x2 = 238 Hz) as the clock frequency used for

MicroBlaze SCP was 100 MHz..

Table 4.2: Timing results of Wavelet De-noising carried on 75 samples of IMU sensor data.
Level of de-composition
and reconstruction plus
adaptive thresholding

3

5

Configuration 1

clock cycles

922296

1228636

ms

18.4459

24.5727

Configuration 2

Clock cycles

199075

273555

ms

3.9815

5.4711

Configuration 3

clock cycles

147829

196361

ms

1.4783

1.9636

Table 4.2 shows that the wavelet de-noising algorithm execution time is in the

order of millisecond i.e. less than 6 ms while OPB SRAM cache enabled. As the

algorithm operates in real time using non-overlapping window mode, this execution

latency is negligible compared to the delay associated with the IMU data buffering i.e.

waiting for arrival for appropriate data to construct the non-overlapping window. By

using cache, the execution latency of wavelet de-noising in real-time (by using non-

overlapping window length of 75 in this case) was speeded up almost 5 times as shown

in the table 4.2. The nature of the most low-cost IMU raw data pre-processing

algorithms (wavelet de-noising, FOS etc.) involves intensive use of loops and this usage

suits cache operation well. In the worst case scenario, even if there was a cache miss at

the beginning of the loop, the subsequent loop operations are executed as if the code was

running from high-speed BRAM.

74

4.3 Hardware Device Utilization Summary

Table 4.3 provides the device utilization summary and table 4.4 represents the

post synthesis clock frequency of the critical modules for the three different hardware

platform configurations (the same three different platforms shown in table 4.1 and table

4.2 for timing analysis purpose) used in the implementation. The data of the tables 4.3

and 4.4 are collected from the design report generated by the EDK tool for each

hardware design. As a side note, it should be observed that choosing FPU leads to

twofold increase (non-FPU version uses 950 logic cells while the current one employs at

least 1616 logic cells) in the usage of logic cells. This observation can act as a

motivation behind exploring future implementations which excludes the FPU.

Table 4.3: Hardware resources used by major IPs

Configuration 1 Configuration 2 Configuration 3

Microblaze 32 bit soft processor (version: 4.00a)

Slices

Slice Flip Flops

4 input LUTs

BRAMs

MUL18X18s

1628(84%)

1335(34%)

2519(65%)

N/A

7 (58%)

1717(89%)

1343(34%)

2721 (70%)

8 (66%)

7(58%)

1616(11%)

1332(4%)

2382 (8%)

N/A

7 (5%)

Memory: Block RAM (BRAM) Block

BRAMs 8 (66%) 4 (33%) 32 (23%)

On-chip Peripheral Bus (OPB) 2.0 with OPB Arbiter

Slices 141 (7%) 141 (7%) 98 (-0%)

RS-232 OPB UART (Lite)

Slices 51 (2%) 51 (2%) 54 (-0%)

SRAM_256Kx32 OPB External Memory Controller

Slices 200(10%) 200 (10%) N/A

Inspired by the successful IMU data pre-processing implementation in real-time

hardware in reference [35] and its optimization in the hardware area, the feasibility of

using fixed point calculation in implementing the wavelet de-noising algorithm for IMU

75

data was explored. By scaling the de-composition and reconstruction filter parameters

and the IMU raw data by an optimal value (through tuning), a single level of de­

composition and reconstruction operation was carried out successfully. But as the LOD

was increased to 3 and 5, an overflow was detected at the MicroBlaze output. The other

obstacle in the scaling approach was the non-linearity introduced by the log function of

wavelet thresholding (shown in equation 2.55). In short, due to unsatisfactory

preliminary results, fixed point calculation scheme was replaced by the one using

floating point.

The total area utilized by IPs not included in table 4.3 (such as LMB BRAM

Controller, OPB Microprocessor Debug Module etc.) constitute less than 5% of the area

of the single major IP Microblaze 32 bit soft processor (version: 4.00a).

Table 4.4: Post synthesis clock frequency for hardware configurations.
Modules

Microblaze
OPB Interrupt
Controller
OPB Timebase
WDT
SRAM_256Kx32
RS-232

Configuration 1
(MHz)
83.19
118.38

122.62

131.80
149.86

Configuration 2
(MHz)
63.29
118.38

122.62

131.80
149.86

Configuration 3
(MHz)
130.88
190.10

197.93

N/A
209.47

Table 4.4 shows the critical frequencies of the (some of the) corresponding IPs

for three hardware configurations. The minor IPs such as SRAM_256Kx32 OPB

External Memory Controller, RS-232 OPB UART (Lite) etc. runs much faster in each

configuration than the single major IP MicroBlaze. Here, the clock on Spartan-3 Starter

board and XUP Virtex-II Pro Board was configured to 50 MHz and 100 MHz

respectively. Thus, application code running on prototyped MicroBlaze SCP would

perform faster if the digital clock configured properly with the critical clock frequency

value. In other words, there is thus an interesting processing margin available for further

algorithmic enhancements.

Table 4.4 shows that, even though the application code run faster (shown in table

4.1 and table 4.2) on configuration 2 due to enabling OPB data and instruction cache in

76

comparison with configuration 1 (no cache), the critical clock frequency for the

MicroBlaze core without the cache option (configuration 1) is higher. Not shown in

table 4.4, the critical frequency for a MicroBlaze configuration without using external

SRAM (on Spartan-3 Starter board) is found to be 83.19 MHz as well. Thus the critical

frequencies for the MicroBlaze hardware configurations built Spartan-3 on Starter board

had an enhancement of 66%, 26% and 66% for configuration 1, configuration 2 and for

a similar of configuration 3 (built on Spartan-3 FPGA using only BRAM) respectively.

77

CHAPTER 5: Conclusion and Further Work

5.1 Summary of Contribution

From the work carried out in the thesis work (research, implementation) and with

the navigational results and timing performances shown in chapter 4, the following

developments can be considered as contribution of this thesis.

5.1.1 Development of navigational algorithms

Extensive research has been carried out with the aim of understanding some of

the existing navigational algorithms related to GPS/INS integrated automobile

navigational solution and to preprocess low-cost raw IMU data. This knowledge, found

to be scattered in numerous contributions in the literature about this field, has been

collated in an organized manner in Chapter 2 of the thesis. Applying the acquired

knowledge, a closed loop decentralized KF filter model was built through 15-state INS

error equations. Subsequently, by tuning the parameters appropriately, the model was

validated successfully for a specific forced GPS outage lasting 20 seconds of an

automobile. Additionally, an algorithm implementing Wavelet De-noising for

preprocessing low-cost IMU data developed both in Matlab and C.

5.1.2 Porting to the Embedded Platform

The software implementation in C of navigational algorithms was successfully

ported to the low cost MicroBlaze soft processor. The validated outputs, characterized

by plots showing the resulting errors, are shown in figures 4.7, 4.8 and 4.12. The

validation shows that a purely software implementation on a single precision embedded

platform can produce acceptable results relative to the results obtained from a desktop

PC platform that uses double precision floating point numbers.

In other words, as demonstrated by figures 4.5 and 4.6, this thesis introduced, a

low cost embedded implementation of a navigational computing unit (NCU) - capable

of providing satisfactory navigational solution for a very short GPS outage (lasting up to

78

20 seconds). The associated wavelet de-noised (applied on raw data and resulted from

MicroBlaze) IMU sensor data are shown in figures 4.10, 4.1 land 4.14.

5.1.3 Real-time solution

The number of clock cycles required for executing navigational algorithms on

MicroBlaze platform was measured in order to validate the real-time requirement of the

implementation as shown in table 4.1 and table 4.2. To improve timing criteria with the

aim of meeting a sampling rate up to 119 Hz (not including the speedup resulting from

increasing the clock frequency to critical value), the necessity of running the software

application code (for MicroBlaze) from high speed Block RAM of the FPGA is

highlighted for faster execution.

5.1.4 A reference for future developers

MicroBlaze processor core was used successfully as it provides the flexibility of

using arbitrary algorithms to be coded in higher level programming language like C,

thereby avoiding the need of using other HDL extensively. In this way, the usage of

MicroBlaze reduces the development time and complexity to a great extent compared to

the case of purely hardware implementation. Thus, by employing the combination of a

low cost embedded platform, a flexible development approach and a real-time solution

by running the code from BRAM, the implementation shown in this thesis work proves

that synthesizing a completely functional low-cost, real-time navigation solution is

feasible.

In the development of the KF model, a considerable amount of time and effort

was devoted to make it functional for any random GPS outage on the given trajectory as

shown in figure 3.7 and to extend the positive effect of wavelet de-noising in real-time

mode on KF output to produce navigational solution domain (i.e. improved position,

velocity and heading solution). Due to the lack of direct access to the collection of real­

time sensor data (as GPS and INS sensor data was only available in an ASCII file

format.), details related to INS and GPS hardware sensor data issues viz. data acquisition

format, sensor setup, initial alignment, detailed sensor error characteristics and error

79

variance values, synchronization between IMU sensors and GPS, time accuracy and

precision of the sensors outputs etc. could not be addressed in this thesis.

With a view to commercialize the end product of the proposed implementation

i.e. a low cost integrated GPS/INS embedded navigational system capable of

successfully bridging short-term GPS outages in the market, a team comprising of

software and hardware developers and experts in vehicle dynamics and GPS/ENS sensor

equipments are required. Provided such a team can be coordinated, this thesis can be

considered as an ambitious introductory step toward that final implementation.

5.2 Recommendations

A significant insight was gained throughout the work on this thesis. This section

mentions some aspects or observations that were acquired during the process. In other

words, important topics that were found essential for implementing a low-cost complete

automobile navigational solution to be marketed (capable of bridging the GPS outages)

but fell outside the scope of this thesis are proposed as recommendations for future work

with the aim of completing an embedded product capable of providing navigation

solution using GPS and IMU sensors.

5.2.1 Observation #1

Detection of either GPS signal outages or deteriorated performance of GPS is a

complex procedure. In this thesis, GPS signal data is assumed to be capable of providing

accurate navigational solution (position and velocity solution). Additionally, intentional

forced outages were introduced. In practice, GPS signal degrades gradually. For this

reason, GPS signal outage detection module can be considered as an essential step

towards a complete GPS/ENS integration module implementation. As discussed in

chapter 2 of the thesis, GPS fails to provide accurate navigational solution for two

reasons. Firstly, there is a possibility of GPS outage due to the loss or blockage of the

line of sight between the GPS receiver antenna and the GPS satellites. Secondly, GPS

data becomes erroneous mostly due to multipath and cycle slip error. Apart from

complete GPS outage/blockage scenario, data fusion through KF technique with

80

erroneous GPS data may not only lead to a significant degrading and/or confusing

navigation solution but also cause a divergence in KF [2].

A decentralized KF architecture module capable of detecting cycle slip is shown

in reference [36]. Multipath interference producing unreliable GPS solution detection

module that can notify a GPS outage is recommended which will maintain the GPS

solution integrity. Most present day off-the shelf GPS receivers are not equipped with

algorithms that can detect this interference and notify a GPS outage to the user. Methods

to reduce the interference effects in GPS receiver hardware are the research topics that

are recommended for developments as well to enhance the GPS solution permanence. In

this way, accurate detection of real-life GPS outages scenario will pave the way for the

implementation of a complete integrated GPS/INS system capable of providing better

navigational solution.

Another significant step towards a final embedded navigation solution that needs

to be undertaken is the interfacing with the digital map matching module (related to the

research filed of GIS) shown in figure 3.4 and 3.5.

5.2.2 Observation #2

For real-time navigational solution, this thesis has adopted a purely software

design implementation (as it provides flexibility in development) on MicroBlaze SCP.

Results obtained from timing analysis and software profiling suggests the

implementation of the time-intensive portion of the code/module in hardware directly for

better performance. Therefore, adopting the software/hardware co-design technique

through low latency MicroBlaze FSL (Fast Simplex Link) interface or through OPB

(On-chip Peripheral Bus) interface will enhance performance. In this regard, the

following modules are recommended to be implemented (for solution speed

up/acceleration) on hardware directly:

a) To handle input/output operations, a modified hardware UART controller with

customized (optimized for navigational application) buffer size.

b) To invert Matrix while implementing the KF algorithm.

81

c) To pre-process/de-noise IMU data module using FOS algorithm as its

significant superiority over wavelet de-noising algorithm in real-time mode suggested in

the reference [35].

\\ w w w \\ \s u \\ w w w

w vv w w w w \\ w w w w

\ \ \\ V. W W \\ \\ W W

\\ W W VL \\ V. W U W V\ W W W W W

W \\ V. \\ \\ \\ \\ W W \\

\\ \\ W \\ \\ \S \\ W \\ \\ W W \\ W

\\

w w w \\ \\ w\\ \\ w w w w v\ i\ v\
W \ \ W U W W W \\ W W
W WW WW W W W W W W W U

w w w w \\ w v*. w w w w w w \\
W W W w u W w. W W W

WWWWWW

W W WW W WW ™ » *»•» « «
w

Computational
I Intensive portion of thei

code built on tte
hardware to accelerate

operation

Area occupied by thg ,
embedded processor

f—

r

v.

Source code running on an embedded processor rPGA fabric
over a FPGA platform

Figure 5.1: Illustration of Hardware-Software co-design on FPGA.

Critical portions of the software code can be executed faster by using multiple

MicroBlaze SCPs connected to each other through FSL interface. As they are integrated

with co-processing capability, both pre-processing/de-nosing IMU sensor data unit and

KF can be implemented in two different processors. It would be worthy to measure and

analyze the processing speed-up/acceleration as opposed to the purely implementation

method illustrated in this thesis. Finally, the issue of lowering the power consumption of

the embedded solution might be researched.

82

References
[1] Godha, S., "Land Vehicule Navigation System", Available:

http://wvvw.location.net.in/maga2ine/2Q06/sep-oct/34 l.htrn. [Accessed Jan. 12, 2008].

[2] Misra, P. and P. Enge "Global Positioning System: Signals, Measurements, and

Performance", Ganga-Jamuna Press, Lincoln, Massachusetts, 2001.

[3] Grewal, M.S., Weill, L.R., and Andrews, "Global Positioning Systems, Inertial

Navigation, and Integration", A.P., John Wiley & Sons, Inc., 2001.

[4] Noureldin, A. Mobile Multi-Sensor System Integration, Course Notes provided for

Royal Military College Course EE 513, Ontario, January 2006.

[5] Armstrong J., (M.A.Sc Thesis), "Application of Fast Orthogonal Search to Accuracy

Enhancement of Inertial Sensors for Land Vehicle Navigation", Department of Electrical

and Computer Engineering, Royal Military College of Canada, Ontario, April 2006.

[6] Abdel-Hamid W., (PhD Thesis), "Accuracy Enhancement of Integrated MEMS-

IMU/GPS Systems for Land Vehicular Navigation Applications", Department of

Geomatics Engineering, University of Calgary, Alberta, January, 2005.

[7] El-Rabbany, A.," Introduction to GPS: The Global Positioning System", Artech

House, 2002.

[8] The Aerospace Corporation, Los Angeles, CA 90009-2957, USA. [Online].

Available: http://www.aero.org, [Accessed September 20, 2007].

[9] Spencer, J., Frizzelle, B., Page, P., Vogler, B., "Global Positionng System: A Field

Guide for the Social Sciences", Blackwell Publishing, 2003.

http://wvvw.location.net.in/maga2ine/2Q06/sep-oct/34
http://www.aero.org

83

[10] Farrell, J., Barth, M., "The Global Positiong System and Inertial Navigation",

McGraw-Hill, 1999.

[11] Titterton, David H.; Weston, John L., "Strapdown Inertial Navigation Technology"

(2nd Edition), Institution of Engineering and Technology, 2004.

[12] Rogers, Robert M., "Applied Mathematics in Integrated Navigation Systems",

Volume 174, Progress in Astronautics and Aeronautics, AIAA Inc, 2007.

[13] Hsu, D.Y., "An accurate and efficient approximation to the normal gravity",

Position Location and Navigation Symposium, IEEE 1998, 20-23 April 1998,

Page(s):38- 44.

[14] Chatfield, Averil B., "Fundamentals of High Accuracy Inertial Navigation"

Application of Fast Orthogonal Search to Accuracy Enhancement of Inertial Sensors for

Land Vehicle Navigation", progress in astronautics and aeronautics, volume 174, 1997.

[15] Niu, X. and El-Sheimy, N., "The Development of a Low-cost MEMS IMU/GPS

Navigation System for Land Vehicles Using Auxiliary Velocity Updates in the Body

Frame", Mobile Multi-Sensor Systems Research Group, University of Calgary.

[16] Analog Devices Inc. (2007). Datasheet of ±1507s Single Chip Yaw Rate Gyro with

Signal Conditioning: ADXRS150. [Online] Available: http://www.analog.com/MEMS,

[Accessed September 20, 2007].

[17] Eberts, M.D., (M.A.Sc. thesis), "Performance enhancement of MEMS based

INS/GPS integration for low cost navigation applications", Department of Electrical and

Computer Engineering, Royal Military College, Ontario, 2007.

http://www.analog.com/MEMS

84

[18] Chiang, K.W., (Ph.D. Thesis), "INS/GPS Integration Using Neural Networks for

Land Vehicular Navigation Applications", Department of Geomatics Engineering,

University of Calgary, Calgary, Alberta, 2004.

[19] Mohamed, A. H., (Ph.D. Thesis): "Optimizing the Estimation Procedure in

INS/GPS Integration for Kinematic Application", Department of Geomatics

Engineering, University of Calgary, Alberta, 1999.

[20] Burrus, C.S.; Gopinath, R. and Guo, H. (1998), "Introduction to wavelet and

wavelet transforms a primer", Prentice Hall, 1998.

[21] Donoho, D., "De-noising by soft thresholding", IEEE Transactions on Information

Theory 41(3), pp. 613-627, 1995.

[22] Digilent Inc., "Spartan-3 Starter Kit Board User Guide", UG130 (vl.l) May 13,

2005. [Online]. Available:

http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD-rm.pdf [Accessed

October 17, 2007].

[23] Digilent Inc., "Virtex-II Pro Development System", [Online]. Available:

http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P&Nav'l=Products«feNav

2=Programmable [Accessed June, 2008]

[24] Xilinx Inc., "MicroBlaze Processor Reference Guide", Embedded Development Kit

E D K 8.1i, February 2 1 , 2006. [Online].Available:

http://www.xilinx.com/ise/embedded/inb ref guide.pdf, [Accessed December. 12,

2006].

http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD-rm.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P&Nav'l=Products�feNav
http://www.xilinx.com/ise/embedded/inb

85

[25] Xilinx Inc., "Embedded System Tools Reference Manual", Embedded

Development Kit, EDK 8.1i, October 24, 2005. [Online] .Available:

http://www.xilinx.com/ise/embedded/est rm.pdf, [Accessed May. 12, 2007].

[26] Xilinx Inc., "Xilinx Shatters Price/Density Barrier for Low Cost FPGAs With New

Spartan-3E Family Starting At Less Than $2.00", [Online]. Available:

http://w\v\v.xilinx.coiTi/prs sis/silicon spart/0531 s3e.htm [Accessed May. 12, 2007].

[27] Xilinx Inc., "Embedded Development Kit: Programmable System Design is Now

Easier than Ever", May, 2006 [Online] .Available:

http://www.xilJnx.com/publications/prod mktg/pnOQI0679-5.pdf, [Accessed March. 10,

2008].

[28] Advanced Navigation and Instrumentation Research Group, "TG6000 field test

trajectory data", performed in summer 2006, Royal Military College of Canada,

Kingston, Ontario.

[29] Noureldin, A, private communication, September 2007.

[30] Press, William H., "Numerical Recipes in C", 2nd ed., Cambridge University Press,

1992. [E-book] Available: http://www.nr.com/.

[31] Semeniuk L., (M.A.Sc Thesis), "Bridging Global Positioning System Outages using

Neural Network Forward Prediction of Inertial Navigation Position and Velocity

Errors", Department of Electrical and Computer Engineering, Royal Military College of

Canada, Ontario, April 2006.

http://www.xilinx.com/ise/embedded/est
http://w/v/v.xilinx.coiTi/prs
http://www.xilJnx.com/publications/prod
http://www.nr.com/

86

[32] Johnston, C. G., (M.A.Sc. thesis), "High Resolution Wavelet De-noising for

MEMS-Based Navigation Systems", Department of Electrical and Computer

Engineering, Royal Military College of Canada, Ontario, 2007.

[33] Misiti M., Misiti Y., Oppenheim G., Poggi J-M.: Wavelet Toolbox For Use with

MATLAB, User's Guide, version 2. The Math Works, Inc., 2002.

[34] Xilinx Inc., "OS and Libraries Document Collection", [Online].Available:

http://www.xiliriiX.com/support/docuTnentation/sw manua1s/edk91i oslib rm.pdf,

[Accessed December. 12, 2007].

[35] Dybwad, S. , McGaughey, D. and Noureldin, A., "FPGA Implementation of High

Resolution Spectral De-Noising Modules of MEMS-based Inertial Sensors" in

Proceedings of the 20th International Technical Meeting of the Satellite Division of the

Institute of Navigation ION GNSS, 2007, Pp. 121-126.

[36] Wei, M. and Schwarz, K.P., "Testing a decentralized filter for GPS/INS

integration", Department of Surveying Engineering, The University of Calgary, Canada.

http://www.xiliriiX.com/support/docuTnentation/sw

