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Abstract— Complex network statistical analysis tools are helpful 

to understand silent features of complex systems. One of the most 

important system growing intentions in recent days is power grid. 

Complex system like power system with specific topology can 

undergo a local or global cascade failure. Prediction and 

prevention of these cascade failures or blackouts is obligatory. In 

this paper some of the most important properties of power grids 

infrastructure are investigated using Complex Network Theory 

(CNT) techniques and methodologies. Discussions are conducted 

on different measures of network structures of IEEE 118 and 

Polish 2383 bus systems. These results and structure of power 

network has important implication on reliability and security. 
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I. INTRODUCTION 
Complex Network Theory (CNT) is an emerging field of 

research and it is being utilized in different fields like social 

sciences, inter-banking systems, computer networks, 

transportation and logistics systems and never the less 

electrical power systems. Recent advancements in network 

theory focus on the relationship between topological structural 

of networks and vulnerability of networks in different types of 

failures. Many classifications of network structure and 

behavior had been discussed in the field of statistical 

mechanics and complex network [1, 2], but the two mostly 

used stochastic models are developed by Erd˝os and Rényi [3, 

4].  

This study focuses on electrical transmission and distribution 

systems due to its large-scale infrastructure and decentralized 

mean growth. Power network efficiency and reliability is a 

major question in recent years especially after 2003 blackout in 

eastern coast of USA. Technical study of power transmission 

system mainly involves three scientific fields including Physics 

(Electro-mechanics), electrical engineering (single and 3-phase 

circuit analysis, control systems) and mathematics (differential 

equations and linear algebra), but ‘local’ and ‘global’ 

properties of network are important to study. 

Wide-area cascading failures (Blackouts) in electrical power 

networks occur frequently than one would expect. These 

cascade failures are random and independent. In United States 

frequent occurrence of blackouts has not decreased since the 

creation of NERC in 1965 [5] despite of many technological 

advancements. A number of modeling techniques has been 

developed so far for the prediction and prevention of blackouts. 

One group of researchers studied blackouts from power 

systems point of view and focus only on characteristics of 

power systems [6, 7], another group analyzed the electric 

supply and demand influence on blackouts [8, 9], the research 

group of Dr. Ian Dobson from university of Wisconsin finds 

the feature of self-organized criticality (SOC) in their series of 

papers [10, 11, 12, 13, and 14]. Studies of power transmission 

in the light of complex network theory are either from the 

perspective of power systems or complex network theory. Half 

of studies focus only on node degree distribution and 

betweenness distribution which is no doubt a key parameters in 

establishing a theoretical probability model [15, 16, and 17], 

other half develop their models by take into account the small-

world network behavior of power grids by using the properties 

of centrality, and path length [18, 19, 20] but there is no 

compact study so far that keep the view of all these parameters 

in their models. 

The goal of the study is to apply complex network statistical 

analysis tools to understand features of power grid networks. 

We use IEEE 118-bus and Polish 2383-bus network to 

illustrate these properties. The paper is organized into four 

sections, section I describes the indexes of network theory 

which are used in this study. Section II contains local and 

global characteristics of power grid networks. Section III 
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provides results and analysis of the study and section IV offers 

the conclusions and future work. 

 

  

Fig.1. A circular node-edge representation of the IEEE 118-bus (left) and IEEE 

2383-bus (right) test systems 

  
II. MEASURES AND METRICS 

If the structure of any network is known then a variety of 

useful quantities that capture particular features of network 

topology can be calculated. In this section some of the basic 

measures of complex network theory (CNT) that reveals 

intriguing features and patterns of power transmission 

networks are described. 

 

A. Power Grid Graph 

A graph G of network topology is a pair of sets G (N, E) where 

N is a set of Nodes (buses) and E is the set of edges 

(transmission lines). An edge ‘ei,j’ is the representation that 

there is an edge b/w nodes’ ni’ and’ nj’ as shown in figure 1.  

 

B. Adjacency Matrix 

Mathematical representation of network has a number of ways 

but the simplest is Adjacency Matrix. It can be represented in 

mathematical form for the undirected case as: 

         
otherwise 0;

j, & i  verticesb/w edgean  is  thereif ;1
ijA  

The Adjacency Matrix of a directed graph has matrix elements.  

                  
otherwise 0;

i,  toj from edgean  is  thereif ;1
ijA  

 

C. Centrality 

Centrality of a network addresses the question, “Which are the 

most important or central vertices in a Network”. There are a 

number of ways to calculate the centrality of a network; some 

of the important measuring techniques are as follows: 

 

i. Degree Centrality 

The simplest centrality measure of network is degree centrality 

which explains how much number of nodes is connected to any 

specific node (ni) in the network.  

 

ii. Eigenvector centrality 

An extension of degree centrality is eigenvector centrality. Let 

the centrality of node ‘i’ is ‘xi’. Start algorithm by setting 'xi=1', 

now use this assumption to measure better centrality measure 

'xi', which is the sum of centralities of i’s neighbors.    

 

 

 

iii. Closeness Centrality 

Another different way to calculate centrality is closeness 

centrality, which measures mean distance from a node to other 

nodes. Suppose ‘dij’ is the length of a geodesic path from ’i’ to 

‘j’, meaning the number of edges along the path. Then mean 

geodesic distance from ‘i’ to ‘j’ averaged over all nodes j in the 

network is, 

 

 

 

iv. Betweenness Centrality 

Betweenness centrality measures the extent to which a node 

lies on path between other nodes. Mathematically, let pst
i
 be ‘1’ 

if ‘i’ lies on the geodesic path from s to t and 0 if there is no 

path. Then betweenness centrality xi is calculated as 

st

i

stp                                Bi

 
D. Clustering Coefficient 

The clustering coefficient measures the average probability that 

two neighbors of a node are themselves neighbors. In effect it 

measures the density of triangles in the networks and it is of 

interest because in many cases it is found to have values 

sharply different from what one could expect on the basis of 

chance. Clustering coefficient for a single node ‘i’ is defined as:  

 

 

Some researchers calculate clustering coefficient for an entire 

network as the mean of the local clustering coefficients for 

each vertex.  

 

E. Degree Distribution 

Degree distribution is the most known fundamental property of 

a network. It calculates the frequency distribution of a node 

degree as: 
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For power grids, the shape of this silent characteristics is either 

exponential or a power-law. In exponential node degree (k) 
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distribution, nodes having relatively high node degree decay 

faster in probability. 

 
                             bk

k aeP
 

Where ‘a’ and ‘b’ are parameters of the considered network. 

Power-law distribution has slow decay with high probability of 

having higher node degree. It is express as
 

                            k CkP
 

where ‘C’ and ‘α’ are parameters of the considered network.  

 

III. EXPERIMENT AND RESULTS 

The topological representation of IEEE 118-bus and Polish 

2383-bus systems can be observed visually from circular 

representation in Figure 1. Study of both systems is conducted 

as undirected graphs. For simplicity impendence of each 

transmission line exist b/w any two nodes is considered as ‘1Ώ’.   

All Centrality measures of every node in IEEE 118-bus and 

Polish 2383-bus systems can be observed from Figure 2 and 

Figure 3 respectively; large spikes in the Figures are the 

identification of most critical (central) nodes in the networks 

under different centrality measures. It can be concluded that 

power flow on transmission lines associated to these nodes 

should be observed carefully to avoid any major cascade 

failure (blackout).   

 

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Degree Centrality

Nodes

D
. 

C
e
n

tr
a

li
ty

 o
f 

e
a
c

h
 n

o
d

e

0 20 40 60 80 100 120
0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Closeness Centrality

Nodes

C
. 

C
e
n

tr
a

li
ty

 o
f 

e
a
c

h
 n

o
d

e

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Betweenness Centrality

Nodes

B
. 

C
e
n

tr
a

li
ty

 o
f 

e
a
c

h
 n

o
d

e

0 20 40 60 80 100 120
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Eigenvector Centrality

Nodes

E
V

. 
C

e
n

tr
a

li
ty

 o
f 

e
a

c
h

 n
o

d
e

 
Fig.2. Centrality measures of IEEE 118-bus system.   
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Fig.3. Centrality measures of Polish 2383-bus system 

 

Table 1 describes some significant ‘local’ and ‘global’ 

properties of the networks together with complexity of 

networks (like density of nodes and edges), degree distribution 

type. A significant conclusion is obtained from the results that 

both networks are sparse and geodesic path lengths between 

random pair of nodes are longer than suggested by Watts-

Strogatz in their small-world structure where less than seven 

even for large networks but path lengths are greater than seven 

in power systems. 

 

TABLE 1 

Comparison of Complex Network Statistical Analysis of IEEE 118-bus and 

Polish 2383-bus  

 

NO 

 

Network Properties 

Network Analysis and comparison 

IEEE 118-bus IEEE 2383-bus 

1 Number of Nodes (buses) 118 2383 

2 Number of edges (transmission lines) 372 5792 

3 Diameter (longest shortest path b/w two 

nodes) 

14 16 

4 Average Node Degree 3.1525 2.05 

5 Average Clustering Coefficient 0.1651 0.0077 

6 Cumulative Degree Distribution Type Exponential 

partially follow 

power-law 

Exponential 

partially follow 

power-law 

7 Fitted Distribution y(x) ~ 2.9x0.02192 y(x)~ 4.665*x-0.09665 
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Fig.4. Probability distribution function (Histogram) for the node degree in 

IEEE 118-bus (left) and cumulative PDF of node degree on log-log scale 

(right).  
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Fig.5. Probability distribution function (Histogram) for the node degree in 

Polish 2383-bus (left) and cumulative PDF of node degree on log-log scale 

(right).  



Graphs of power networks considered for this study are large 

but finite in terms of order and size, thus only provide limited 

and finite probability statistics. Degree distribution provides 

small information about static condition of network. These 

graphs do not reveal any highly connected Hubs at first glance 

that could consider them as a scale-free networks like World 

Wide Web and airline network. Degree distribution of these 

two networks does not fit well with a power-law distribution as 

shown in Figure 4 and Figure 5. When observed on log scale 

then they exhibit some properties of power-law in large-k 

region which is precisely the region in which the power law is 

normally followed most closely. Previous study [10, 11, 12, 13, 

and 14] explains a reason of cascade failure blackouts in power 

systems and found a power law b/w PDFs of blackouts and 

number of customers’ unserved (loss of load). Power law 

profoundly increases the risk of large blackouts and also show 

evidence of critical loading where probability of cascading 

failure rapidly increases. In this study a power-law is found up-

to some extend b/w degree distribution as an evidence of 

critical node degree and overall blackout risks due to loss in 

structure of the system. 

 

IV. CONCLUSION AND DISCUSSION 

Our analysis shows that network analysis tools applied to 

power networks can display some general features of power 

systems, but it is still in lock of metrics to quantitate the unique 

characteristics of power systems, for example, the energy 

balance at each node, the impact of reactive power on 

blackouts, etc.  Complex network theory (CNT) also deals with 

the design aspect of power systems. In the light of CNT power 

grid topologies can be improved to avoid any cascade failure. 

Network Analysis clearly states link between network structure 

and types of failures to which these networks are vulnerable. 

Scale-free networks are more robust to failures at their highly 

connected Nodes. These made them highly vulnerable to 

premeditated attacks on these hubs. Analysis exhibits that 

power networks illustrate some semblance to scale-free 

network when observed more carefully on large scale. 

Complex network theory is a useful tool in power system 

domain, especially in creating models that consider physical 

parameters of network data and also the information regarding 

electrical parameters. Our next step is to develop a 

comprehensive model by keeping in view the valuable 

information of network topological characteristics and also the 

electrical engineering perspective of power grid like 

Kirchhoff’s Laws and demand and supply relationships. 
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