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Abstract

A major goal for brain machine interfaces is to allow patients to control prosthetic devices with

high degrees of independent movements. Such devices like robotic arms and hands require this

high dimensionality of control to restore the full range of actions exhibited in natural movement.

Current BMI strategies fall well short of this goal allowing the control of only a few degrees of

freedom at a time. In this paper we present work towards the decoding of 27 joint angles from the

shoulder, arm and hand as subjects perform reach and grasp movements. We also extend previous

work in examining and optimizing the recording depth of electrodes to maximize the movement

information that can be extracted from recorded neural signals.

I. Introduction

For patients suffering from neurodegeneration, stroke, paralysis or upper limb amputation,

there can be profound difficulties in communicating and interacting with the world.

Currently there are many therapeutic devices that may provide some remedy to these issues.

Such devices include visual search keyboards controlled via a cursor on a monitor [1],
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functional electrical stimulators to move paralyzed muscles [2], [3] and robotic arms and

hands [4], [5].

To control these devices various interfaces have been proposed. These vary from non-

invasive techniques such as tracking eye movements, foot switches, decoding

electromyograms from remaining functional muscles or neural signals from scalp electrodes

[6], to invasive techniques such as electrodes placed on the surface of the cortex [7] or

penetrating the cortex [8], and electrodes implanted into reinervated muscles [9].

The benefit of the invasive techniques, in particular the brain machine interface (BMI), is

that they offer the promise of signals with higher temporal and spatial fidelity. These signals

have the potential to allow for the control of prosthetics with higher degrees of freedom.

Over the last decade, there has been great progress in brain machine interfaces [6–10].

However, as many prostheses aim to help patients suffering from upper limb paralysis or

amputation, the number of independent degrees of freedom that current state-of-the art BMIs

can control still falls well short of those exhibited in natural movement. For these invasive

devices to be of full benefit to the end users, decoding strategies to control the many degrees

of freedom in the arm, hand and shoulder are required.

Further, it has been long known that the functional organization of the neocortex changes

across different cortical layers [14]. To maximize the efficacy and reliability of BMIs, the

optimal depth at which electrodes need to be placed to record local field potentials (LFP)

and spiking activity needs to be studied. In previous work, the optimal depth for decoding

center-out saccadic movement goals from neuronal activity in the prefrontal cortex was

found [15]. Future work is needed to determine whether neural recordings can be similarly

optimized for the decoding of each joint angle involved in complex, unrestrained

movements.

This paper presents neural decoding of 27 of the multiple degrees of freedom in the

shoulder, arm and hand. In addition the paper examines how this information changes as a

function of electrode recording depth in the cortex.

II. Methods

A. Experimental Preparation

One adult male Rhesus macaque (Macaca mulatta) participated in this study. Recording

chambers were placed over dorsal premotor cortex (PMd) in both hemispheres. In each

chamber, a thirty-two electrode semi-chronic microdrive was implanted (SC32-1, Gray

Matter Research, USA). Electrodes were sharpened glass coated tungsten wires (Alpha

Omega Inc., Il) and had initial impedance between 0.7 – 1.5 MΩ measured at 1 kHz.

Electrodes had a center-to-center spacing of 1.5 mm and could be moved bidirectionally.

Electrodes were advanced between 30–125 µm per recording session.

All surgical and animal care procedures were approved by the New York University Animal

Care and Use Committee and were performed in accordance with the National Institute of

Health guidelines for care and use of laboratory animals.
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B. Motion Tracking

The subject was tracked via reflective balls placed on the hand, arm and upper torso. The

reflective balls were 3-mm in diameter and were illuminated and monitored using 16

infrared and near-infrared cameras (Osprey Digital RealTime System, Motion Analysis

Corp., USA). Markers were placed in the middle of the distal, intermediate and proximal

phalanges, and the back of the hand, (Fig. 1). Recordings were made with two different

marker sets. In the full marker set, 24 markers were used (all circles, Fig. 1) and in the

reduced marker set, markers were placed on the shoulders, elbow, wrists, and tips of the

fingers (filled circles, Fig. 1). Movements were tracked at 200 frames/s and individual

markers were identified offline (Cortex, Motion Analysis Corp.)

Once the marker data was labeled, joint angles in the hand, arm and shoulder were solved

using a scaled musculoskeletal model of a Rhesus macaque right arm [16], [17] (SIMM,

MusculoGraphics Inc., USA). For the full marker set, 27 joint angles were calculated, while

in the reduced marker set 7 joint angles were calculated.

C. Behavioral Task

The subject performed reach-and-grasp movements to a range of spatial locations for liquid

rewards. The subject was trained to grasp a small cube (25 mm×25 mm×25 mm, Fig. 2) on

the end of a piece of dowel wood with a power grip. A reward was given for each correct

grasp. The subject made reaches with his right limb.

D. Offline Decoding Analysis

Joint angles were decoded from neural signals offline using a kernel-based autoregressive

moving average (KARMA) model which nonlinearly maps population neural activity to

dimensions of joint angles or arm motion [18]. Recording sessions were split into two equal

halves and the model was fitted on one half and then used to decode the other half.

At time t, KARMA uses the past s neural states and past r arm position states to estimate the

arm position at time t + 1. Let yt be the arm position and xt be the neural activity at time t.

Let ut be a vector which concatenates the r most recent arm position states (yt−r+1:t) and the s

most recent neural states (xt−s+2:t+1). If the arm position is q dimensions, and there are d

neural units, then ut has dimension sd + rq. We train a support vector regression (SVR)

model on input vectors ut and the one-step-ahead output vectors yt+1. After learning the

support vectors vi and the corresponding weights i from training data, we predict on separate

data with the prediction function:

with k(·,·) the kernel function (we used a radial basis function). For our analyses, r = s = 7.

When decoding a whole time-series, the ŷt+1 estimate will be part of ut+1 (real yt+1 is not

known on non-training data). The neural data used has generally been 100 ms-binned firing

rates (spikes determined by threshold-crossings) from the 64 electrodes (without spike

sorting).
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To characterize the performance of the predictions, the correlation coefficient between the

actual joint angles and decoded joint angles was computed. All models and performance

parameters were estimated through cross-validation. Finally, a neuron dropping analysis

where decoding was performed with randomly permuted subsets of electrodes was used to

examine the contribution of past arm states on decoding performance.

III. Results

One subject participated in 18 experimental sessions. We first present an analysis of the

independence of joint angles during the behavioral task, then overall decoding performance

of all joint angles, and finish with an analysis of how a decoding performance of a subset of

joint angles changes with electrode recording depth.

A. Correlations in Joint Angles

To examine the complexity of the movements elicited in the behavioral task, the correlations

between joint angles were calculated (Fig. 3). The joint angles in the shoulder were highly

correlated with each other as well as the joint angles in the fingers. The high correlations in

the fingers, especially in the ring, middle and index fingers, are resultant from all five

fingers closing and opening around the target object in unison. Interestingly, joint angles in

the wrist were negatively correlated to the joint angles in the fingers.

B. Decoding Joint Angles

Twenty-seven joint angles were decoded using recordings from all electrodes in both

hemispheres from one session. Figure 4 presents the average correlation coefficient between

the actual joint angles and the predicted joint angles for the KARMA decoding.

The average correlation coefficient in the shoulder, wrist and elbow for this one session was

found to be 0.6 ± 0.1 (mean ± std.), while decoding joint angles in the fingers was poorer

with a correlation coefficient of 0.5 ± 0.2.

When neurons were randomly sub-selected and used for decoding, performance increased

from an average of 0.1 ± 0.1 (mean ± std.) for one electrode to 0.6 ± 0.2 for 64 electrodes

(Fig. 5).

C. Depth Decoding Performance

To examine the effects of neural recording depth on decoding performance, the average

correlation coefficients for multiple recording sessions and different depths were analyzed.

For this depth analysis a subset of seven joint angles in the shoulder elbow and wrist were

used. Figure 6 presents the average decoding performace at different depths using the 32

electrodes in the left hemisphere (20 sessions; dashed lines) and using the 32 electrodes in

the right hemisphere (20 sessions; solid lines). For electrodes in the left hemisphere there

was an average of 10 ± 5 spiking channels in each session, while the electrodes in the right

hemisphere had an average of 13 ± 5 spiking channels.

The average correlation coefficient across all joint angles and depths in the left hemishere

was 0.4 ± 0.2 (mean ± std.), with better decoding performance from neural signals in the
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right hemisphere with an average correlation coefficient of 0.6 ± 0.2. Decoding performance

was best for joint angles in the shoulder (left: 0.4 ± 0.1; right: 0.6 ± 0.1) and elbow (left: 0.4

± 0.1; right: 0.6 ± 0.1) than for joint angles in the wrist (left: 0.3 ± 0.1; right: 0.4 ± 0.1). This

trend was consistent for decoding of neural signals from the left and right hemisphere, and

similar trends were observed with other decoders (e.g. Kalman filter), though we observed

the best decoding performance using the KARMA model. The best decoding performance

for the left hemisphere was at depth 1.5 mm (shoulder: 0.5 ± 0.2; elbow 0.7 ± 0.1; wrist: 0.4

± 0.1). For the right hemisphere the best decoding performance was at 1.3 mm (shoulder: 0.7

± 0.1; elbow: 0.8 ± 0.1; wrist: 0.6 ± 0.1).

Decoding performance in depth showed no clear trend across the left and right hemispheres.

Using neural signals from the left hemisphere showed a stable decoding performance across

depths and joint angles. However, decoding performance while using neural signals in the

right hemisphere remained stable across most joint angles with the exception of shoulder

rotation, pronation or supination and wrist deviation, which showed a gradual increase in

decoding performance until a depth of 1.3 mm. More recording sessions at different depths

need to be added to allow for a clearer examination of decoding performance in depth.

IV. Discussion

This paper presents preliminary results in which a simple upper limb movement was tracked

with high precision while recording neural activity bilaterally at multiple cortical depths. By

analyzing the correlations in joint angles throughout the movements, we found that the joints

in adjacent fingers moved in similar patterns during gross grasping tasks. These high

correlations are not optimal in allowing the study of neural decoding of movements with

high degrees of freedom. Future work will involve tasks that encourage individual finger

movements to occur independently from each other, reducing the number of synergies in the

movements.

With the current work, we decoded joint angles in the shoulder, wrist and elbow with a

correlation coefficient of 0.6, while correlation coefficients for decoding joint angles in the

fingers 0.5. The decreased decoding performance in the fingers may be due to increased

noise in the joint angle solving in the distal bones. This noise arises from errors in the

scaling of the bones in the hand and mismatches between actual and designated marker

locations. Increasing the number of degrees of freedom involved in the behavioral task will

increase the difficulty of the decoding resulting in a most likely decrease in accuracy.

However, this may be offset by the addition of electrodes in other movement related areas

such as ventral premotor and primary motor cortex.

Finally, when examining the effect of depth on the decoding of joint angles, no consistent

trend was observed from the electrodes in the left and right hemispheres. An analysis of the

neural data at more superficial recording depths may provide further insight into the

encoding of individual joint angles. An accompanying analysis on the effect of each

individual electrode site, through decoding with subsets of electrode groups, may allow for

proper optimization across all 27 joint angles.
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V. Conclusion

In this paper we present the decoding of 27 joint angles in a power grip task as well as the

decoding performance of a subset of seven joint angles at different depths of the cortex.

These preliminary results show that many degree of freedom movements can be decoded

from neural activity. Future work will focus on increasing decoding performance through

electrode number and placement and changes to task complexity.
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Figure 1.
Marker locations on the hand, arm and upper torso indicated by the grey circles. The full

marker set is comprised of the filled and unfilled circle locations, while the reduced mark set

is comprised of the just the filled circle locations.
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Figure 2.
Subjects were trained to reach to and grasp a cube. The cube was 25 mm on each side.
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Figure 3.
Correlations between joint angles for the power grasp task. Labels for the odd rows and

columns are presented to the left of the figure while labels for the even rows and columns

are presented at the bottom of the figure. Joint angles in the fingers were highly correlated

with each other.
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Figure 4.
Decoding performance from 64 electrodes across both hemispheres for the 27 degrees of

freedom joint angles. Correlation coefficients between decoded and actual joint actions are

presented.
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Figure 5.
Correlation coefficients (mean ± s.e.) for decoding with permutations of random subsets of

electrodes. Decoding performance plateaus when more electrodes are added. (Red: shoulder

elevation; green: shoulder elevation angle; blue: shoulder rotation; black: elbow flexion;

yellow: pronation and supination; cyan: wrist flexion; magenta: wrist deviation.
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Figure 6.
Average decoding performance as a function of recording electrode depth for each

microdrive. The correlation coefficients for actual and decoded joint angles are present in

the top panels (solid lines) for the microdrive in the right hemisphere and bottom panels

(dashed lines) for the microdrive in the left hemisphere.

Wong et al. Page 13

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 September 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


