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Abstract— In most paradigms for Brain-Computer Interfaces
(BCIs) that are based on Event-Related Potentials (ERPs),
stimuli are presented with a pre-defined and constant speed.
In order to boost BCI performance by optimizing the parame-
ters of stimulation, this offline study investigates the impact
of the stimulus onset asynchrony (SOA) on ERPs and the
resulting classification accuracy. The SOA is defined as the
time between the onsets of two consecutive stimuli, which
represents a measure for stimulation speed. A simple auditory
oddball paradigm was tested in 14 SOA conditions with a SOA
between 50 ms and 1000 ms. Based on an offline ERP analysis,
the BCI performance (quantified by the Information Transfer
Rate, ITR in bits/min) was simulated. A great variability in
the simulated BCI performance was observed within subjects
(N=11). This indicates a potential increase in BCI performance
(≥ 1.6 bits/min) for ERP-based paradigms, if the stimulation
speed is specified for each user individually.

I. INTRODUCTION

Using a Brain-Computer Interface (BCI), users can send
control signals to an application, even if they are unable to
control any muscle. Recent research aims to develop novel
BCI paradigms with a high rate of communication. Most
of these approaches are based on Event-Related Potentials
(ERPs), which are the EEG responses triggered by a per-
ceived event or stimulus. Various paradigms were proposed
using the visual [1] or auditory [2], [3], [4] modality of
stimulation. Most of those ERP paradigms follow the oddball
principle of rare target and frequent non-target events. But
they differ in the choice and presentation mode of stimuli.
Thus, it is reasonable to boost the classification accuracy and
BCI performance by optimizing the stimulus characteristics.
For the visual and auditory modality, this can be achieved
by finding stimulation procedures that elicit the strongest
possible class-discriminative components [5], [6], [7], [8].

Another parameter that can be modified is the stimulation
speed, which is often described by the stimulus onset
asynchrony (SOA) or inter stimulus intervals (ISI).
The SOA specifies the time between the onsets of two
consecutive stimuli. Most BCI paradigms are applied with
a SOA value between 83 ms [1] and 500 ms [9]. Comparing
the visual BCI performance of two SOA levels (175 ms
and 350 ms), Sellers et al. [10] already stated in 2006 that
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the choice of SOA highly affects the BCI performance,
concluding that “it appears to be worthwhile to test multiple
ISI values and thereby determine the optimal value for each
user”. Nevertheless, the exact choice of stimulation speed
has not yet been considered to be crucial, thus it was not
optimized by any means.

In the present study, the parameter SOA was investigated
with respect to the impact on classification accuracy and
BCI performance in a simple auditory oddball paradigm.
Classical ERP literature [11] describes decreasing amplitudes
of class-discriminative ERP components such as P300 for
decreasing SOA values and target-to-target intervals (TTI).
Consequently, it is expected that the binary classification
accuracy (target vs. non-target) correlates with the SOA,
such that fast SOA conditions result in a lower accuracies
than slow SOA conditions. But although speeding up the
stimulation might lead to a reduced classifiability per stimu-
lus, the rate of stimulation is increased. Thus, there may be
more stimuli, with each stimulus carrying less discriminative
information, which could result in an increased BCI perfor-
mance. Accordingly, finding the best SOA for a BCI user
corresponds to finding the optimal trade-off between the rate
of stimuli and the classifiability per stimulus.

II. METHODS

A. Experimental design

Within a single session of about 3 hours, a simple au-
ditory oddball paradigm was tested in 14 SOA conditions.
The same type of experiment was performed with varying
stimulation speed: a SOA between 50 ms and 1000 ms. The
exact SOA conditions are shown at the bottom of Fig. 3c. The
experiment was divided into four parts, each part consisting
of eight blocks with randomized order of conditions. Within
each block, there were four consecutive trials of the same
condition. In each trial, participants had to concentrate on
a rare target tone while neglecting the frequent (83.4 %)
non-target tone. Both types of stimuli were sinusoidal with
a duration of 40 ms. The target tone had a high pitch
(1000 Hz) and the non-target tone had a low pitch (500 Hz).
Each trial consisted of 72–90 stimulus presentations (16.6 %
targets), and the participant had the task to mentally count the
occurrences of the target stimulus. In total, this leads to 1296
events (216 targets and 1080 non-targets) in each condition.
Within one trial, the sequence of targets and non-targets was
randomized, while it was assured that there were at least
three non-targets between two consecutive target stimuli.
While attending to the auditory stimuli, the participants



were asked to fixate a fixation cross and to not use any
muscles. After the first block, the subjects were asked which
stimulation speed they preferred.

B. EEG acquisition

EEG signals were recorded using a Fast’n Easy Cap (Easy-
Cap GmbH) with 61 wet monopolar Ag/AgCl electrodes
placed at symmetrical positions. Channels were referenced
to the nose. Additionally, Electrooculogram (EOG) was
acquired under the right eye. Signals were amplified using
two 32-channel amplifiers (Brain Products), sampled at 1 kHz
and band-pass filtered between 0.4 and 40 Hz. The data
was epoched between -150 ms and 1000 ms relative to each
stimulus onset.

C. Data analyses

All ERP analyses were performed in Matlab and the
EEG data was downsampled to 200 Hz. In total, 216 target
epochs and 1080 non-target epochs were obtained for each
participant and each condition. To remove artifacts, epochs
were excluded if their peak-to-peak voltage difference in any
EEG or EOG channel exceeded 100µV. For classification,
the mean potentials in 12 globally selected intervals at each
channel were taken as features, leading to a 732-dimensional
(12×61) feature vector for each epoch. The intervals were
chosen between 100 ms and 700 ms after stimulus onset with
shorter intervals for early responses. A binary classifier that
separates between target and non-target epochs was trained
for each participant and condition. To account for the the
ill-posed ratio of number of data points vs. dimensionality
of the feature vector, (linear) Fisher Discriminant Analysis
(FDA) was applied with shrinkage regularization [12]. The
classification accuracy was estimated by a cross validation
with 5 folds and 5 shuffles. To account for the imbalance
between non-targets and targets, the classwise balanced
classification accuracy was calculated, which is the average
decision accuracy across classes (target vs. non-target,
chance level 50 %).

D. Simulating the ITR

Based on the empirically obtained binary classification
accuracy for each SOA condition, the corresponding BCI
performance (in bits/minute) was assessed by simulation. A
BCI experiment with a 6-class ERP paradigm was simulated
for each subject and SOA condition. Therefore, classifier
outputs for target and non-target events were generated
according to the binary accuracy, which was determined for
the two-class oddball data. Thus, it is assumed that the binary
classification accuracy (targets vs. non-targets) of the 6-class
paradigm corresponds to the classification accuracy of the
2-class paradigm with equal stimulation speed. Based on
the generated classifier outputs, trials were simulated and
a multiclass decision was made as soon as an early-stopping
criterion was fulfilled, at the latest after 15 presentations of
each stimulus [13]. The duration of a trial and the selection
accuracy of the corresponding one-out-of-six decision thus
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Fig. 1. Target and non-target ERPs maps for three subjects and the grand
average over all subjects at electrode Fz. Each image depicts the course of
an ERP over time and each row corresponds to one SOA condition. All
color legends are equal, with red colors coding for positive amplitudes and
blue colors coding for negative amplitudes.
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Fig. 2. Class discrimination maps over time for each SOA condition:
ssAUC values at electrode Fz over time (a) and binary classification accuracy
based on the mean amplitude of a sliding 50 ms EEG epoch with all
electrodes (b). A close-up of the binary classification accuracy har for the
SOA conditions 75, 87, 100 is shown in (c).

depended on the SOA and the binary classification accuracy.
To account for pauses in between trials, a fixed time of
7 seconds was added after each selection. The ITR (as
defined in [14]) was then computed based on the number
of correct and incorrect decisions after the simulated BCI
session, which lasted 60 minutes.

III. RESULTS

An analysis of the EEG data revealed that the stimulation
time strongly impacts the shape of ERP components for non-
target and target epochs. Fig. 1 depicts ERP responses to
target and non-target stimuli for three subjects and the grand
average. The ERP response is color-coded with blue (red)
colors coding negative (positive) amplitudes. Each of the 14
rows in the image corresponds to one SOA condition where
the top row shows the fastest stimulation (SOA = 50 ms)
and the bottom row reflects the slowest stimulation (SOA =
1000 ms). As a general trend, the amplitudes of the ERPs
increase with slower stimulation speed, which is in line with
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Fig. 3. Classwise balanced binary classification accuracy (a) for each
subject and SOA condition. Simulated ITR (b) for each subject and SOA
condition. Individual maximum values are marked with colored circle,
individually preferred conditions are marked with a diamond. Average
absolute difference (c) between the ITR in individually preferred SOA and
individual optimal SOA. The whiskers show the standard deviation across
subjects.

classical ERP literature [11]. This holds particularly for non-
target ERPs.
For target and non-target responses, one can observe a
negative deflection 150 ms after stimulus onset. This leads to
a vertical blue pattern in the images. For the target events,
this N150 component is considerably stronger which is often
referred to as Mismatch Negativity (MMN) in neurophysiol-
ogy literature [15]. Target responses show a positive deflec-
tion that starts 200 ms after stimulus onset. Amplitude and
duration of this P200 component increases with increasing
SOA (and decreasing stimulus speed, respectively).
For non-targets, one can additionally find a diagonal pattern
between 200 ms and 400 ms after stimulus onset. This pattern
reflects the shift in the steady state response, caused by con-
secutive stimuli. Thus, those responses are directly affected
by stimulation speed.

Fig. 2 depicts the class discrimination between targets
and non-targets over time. Fig. 2a shows the course of
class discrimination for electrode Fz, while Fig. 2b displays
a measure of class discrimination that incorporates all 61
EEG channels. To quantify class discrimination for one
channel over time, the area under the ROC-curve (AUC) was
computed and slightly modified (signed and linearly scaled
to the range range of [0, 1]). The resulting measure (called
ssAUC, see also [3]) provides information about the strengths
and the direction of an effect. In Fig. 2a, an early negative

class-discriminative component (MMN) and a later positive
discriminative component (P2) can be observed at Fz.
To obtain a measure for class discrimination that considers
all 61 EEG channels, classification accuracy was estimated
with a sliding window as features: mean amplitudes of a
50 ms interval were computed for all electrodes, resulting in
a 61-dimensional feature vector for each stimulus. Based on
those features, the classification accuracy (targets vs. non-
targets) was computed for the given interval. The averaging
interval was sliding between 0 ms and 600 ms after stimulus
onset. Fig. 2b depicts the obtained classification accuracy,
with red (blue) coding for high (low) classification accuracy.
Fig. 2a-b reveal, that the latency of the class discriminative
N150 component is the same for all conditions. Thus, stim-
ulation speed does not affect the latency of the N150. In
contrast, the latency of the class discriminative P200 com-
ponent is affected by the stimulation speed, in particular for
subject har and haq. Moreover, one can observe the general
trend of increasing amplitudes and class discrimination with
increasing SOA for both the N150 and the P200 component,
which is known from classic ERP literature [11].
This correlation of class discrimination and SOA is also
reflected in Fig. 3a, where classification accuracy is plotted
for each subject and each condition. On average, the binary
classification accuracy is highest for a SOA of 1000 ms
(SOA1000). Although this observation is in line with clas-
sic ERP literature, classification accuracy is not decreasing
monotonously with faster stimulation. For example, Fig. 3a
shows clear peaks for subject har at SOA87 and SOA175,
which means that those stimulation conditions induce evoked
potentials that can be classified more accurately than other
(even slower) stimulation speeds. For har, the classification
accuracy at SOA87 (0.84) is considerably higher than the
accuracy for SOA75 (0.73) and also higher than SOA100

(0.78). The reason for that increase is explained in Fig. 3c,
showing that for SOA75, there is only early discriminative
information centered at 120 ms after stimulus onset. For
SOA87, a strong P200 component is observed addition-
ally, which explains the increase in classification accuracy
from 73 % to 84 %. Reducing the stimulation speed from
87 ms to 100 ms (SOA100), the P200 latency increases, but
more importantly, the early component at 120 ms diminishes,
which results in a reduction of overall class discrimination
and classification accuracy (84 % to 78 %). This is only
one example for individual variability in ERP components
and classification accuracies for slightly different stimulation
speeds.

Fig. 3b shows the ITR that was simulated for each subject
and condition as described above. One can observe that the
optimal stimulation speed (with respect to ITR) is between
87 ms and 200 ms for most subjects. The maximum ITR
value for each subject is marked with a circle. Due to
considerable variability in the binary classification accuracy,
the ITR is also varying for single subjects, leading to peaks
in the curve, such as SOA87 for har. Fig. 3c quantifies
how much BCI performance is lost by a globally defined
stimulation speed that is used for all subjects: the individual



maximum ITR (ITRmax) is subtracted from the individual
ITR (ITRSOAi

) for each SOA condition i. Thus, the curve
in Fig. 3c can only reach the value 0 if all subjects have
their maximum ITR at the same stimulation speed. The
graph shows that if the stimulation speed is globally chosen
between 87 ms and 200 ms, the average BCI performance
is ∼2 bits/min lower than the individually optimized ITR.
Across all conditions, SOA175 performs best with with a
loss of 1.6 bits/min. Thus, if the individually optimal SOA
was used as stimulation speed, the average increase in ITR
would be at least 1.6 bits/min, even if the globally optimum
was known.
Moreover, it was found that using the individually preferred
stimulation speed leads to a very good performance as well
(loss of SOAprefSOA = 1.74).

IV. DISCUSSION

In typical BCI paradigms based on ERPs, such as [1],
[6], [3], the stimulation speed (here SOA) is pre-defined
and thus equal for each subject. Changing the stimulation
speed, one observes varying ERPs as shown in Fig. 1.
In the study presented here, it is demonstrated, that even
in one of the simplest types of ERP paradigms (2-class
auditory oddball), a slight change in stimulation speeds
may result in non-linear variations of class-discriminative
ERP components and the resulting classification accuracy.
Discriminative ERP component are suppressed or enhanced
for specific stimulation speeds, as it is shown for one subject
in Fig. 2.
As a result, this study points out that an individual choice
of the stimulus onset asynchrony is highly beneficial with
respect to BCI performance. The analyses of a simulated
online BCI experiment with 14 SOA conditions reveal that
BCI performance (assessed by ITR) is increased by ∼2
bits/min, if the SOA is defined for each subject individually.
The work by Sellers [10] already showed that the choice
of SOA highly impacts the BCI performance. The presented
study underlines these findings and quantifies the systematic
error which is made due to the global selection of the SOA.
Moreover, we show that the personally preferred stimulation
speed also leads to a very good BCI performance, being
almost as good as the (mostly unknown) global optimum.
As the next steps, multiclass ERP experiments should be
performed with varying stimulation speed to validate the
presented findings. Moreover, machine learning methods will
be elaborated to find the individually optimal -or suboptimal-
stimulation speed within a short time.
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