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Abstract
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers
have increasingly incorporated human biomechanical features. However, the performance of
finger reaching movements to visual targets involving the complex kinematics of multi-jointed,
anthropomorphic actuators is a difficult problem. This is because the relationship between sensory
and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two
last joints. Recently, we developed a cortical model that learns the inverse kinematics of a
simulated anthropomorphic finger. Here, we expand this previous work by assessing if this
cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid
finger having its two last joints coupled and controlled by pneumatic muscles. The findings
revealed that single 3D reaching movements, as well as more complex patterns of motion of the
humanoid finger, were accurately and robustly performed by this cortical model while producing
kinematics comparable to those of humans. This work contributes to the development of a
bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and
prosthetic hands.

I. Introduction
The multiple joints, tendons and muscles of the human hand allow the fingers to reach
diverse spatial positions via various trajectories, resulting thus in a high degree of versatility
which is critical in daily activities [1]. Such finger flexibility involves a complex neural
control system where a particular trajectory has to be selected, planned and executed to
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account for various task constraints (e.g., accuracy) or changing environments (e.g., external
perturbation) [1].

Thus, it is not surprising that in recent years the field of humanoid robotics has devoted
substantial efforts to design artificial anthropomorphic hands that are expected to achieve
performance as close as possible to human hands. This work has tried to replicate hand/
finger sensorimotor coordination, transformation and adaptability to the task demand as well
as to the dynamics of unstructured environments [1],[2]. However, although multi-fingered
humanoid hands are expected to have the versatility to perform fine and complex tasks that
are impossible with a simple gripper, such multi-fingered humanoid hands are a complex
kinematic system. In most recently developed humanoid robotic hands (e.g., Shadow Hand
[3], Robonaut Hand [4]) each finger is an independent kinematic chain with multiple
degrees of freedom. Since finger mechanical design is based on their human homologues,
the last two joints of the fingers are mechanically coupled by employing linkage specialized
mechanisms such as the tendon or timing belt (e.g. [4],[5]).

In order to command such complex kinematic mechanisms, a robotic controller has to learn
the internal models of forward and inverse sensorimotor transformations (e.g., inverse
kinematics) for reaching and grasping. However, this is a complex problem since the
mapping between sensory and motor spaces is highly nonlinear and depends on the
constraints imposed by the physical features of the robotic finger, such as the coupling of the
two last joints, as well as by the changing environment [5],[6].

In order to solve this inverse kinematics problem, two neural modeling approaches can be
contemplated. The first one includes models that do not account for any particular
neurophysiological substrate, resulting in very limited biological plausibility (e.g., [7]). The
second approach proposes neural models that are biologically conceivable by incorporating
particular brain structures and/or functions such as the cerebellum [8],[9] or the population
vector coding processes that were previously revealed in motor/premotor areas [10]–[14].
Consistent with the second approach, recently a cortical network model able to learn the
internal inverse kinematics model of a simulated anthropomorphic robot finger was
proposed [13],[14].

Here, we aimed to test if such a cortical model was robust enough to learn the internal
inverse kinematics model for an actual anthropomorphic humanoid finger having its two last
joints coupled and controlled by a bio-inspired actuator such as artificial antagonist
pneumatic muscles.

II. Modeling Approach
A. Cortical Network Modeling

The cortical architecture developed here extends previous models of reaching [10],[11] that
functionally (i.e., no explicit modeling of the cortical circuitry was included) replicate the
population vector coding processes previously revealed in the motor and premotor cortices
[15]. Specifically, our cortical model aims to learn the internal representations of the inverse
kinematics of an anthropomorphic robotic finger by acquiring the mapping between spatial
and joint displacements of the finger generated by the motor commands. Such an inverse
kinematics mapping is learned by integrating i) visual information (fingertip motion, 3D
targets localization); ii) proprioceptive information that encodes the current state of the
humanoid finger (joint position); iii) the neural drive that conveys information about motor
performance; iv) the goal-related information involved in motor planning; and v) the motor
error (e.g., computed by the cerebellum; [8–9]).
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The robotic platform employed here consisted of the ShadowHand™ finger [3] which is an
anthropomorphic humanoid finger actuated by three pairs of pneumatic antagonist muscles
(see Fig. 1). The first and second pair of muscles control the movement of adduction-
abduction and flexion-extension of the metacarpophaleangeal (MCP), joint respectively. The
third pair controls the movement of flexion-extension for both the proximal interphalangeal
(PIP) and distal interphalangeal (DIP) joints. Thus, when considering such an actuation
system, this (three degrees of freedom) humanoid finger includes a mechanical coupling
between the PIP and the DIP making the computation of the inverse kinematics particularly
challenging [5],[6].

Specifically, the relationship between spatial and joint velocities of the robotic finger can be
described as follow:

(1)

where Δx, Δθ and J are the spatial and joint velocity and the Jacobian matrix of the
humanoid finger, respectively. To obtain a joint rotation vector that moves the robotic finger
at a desired spatial velocity, (1) can be rewritten as follow:

(2)

where G(θ) =J−1(θ) is an inverse of the Jacobian matrix. Here, the elements of the matrix
G(θ) are denoted by gij(θ), where indices i and j refer to the joint space and the 3D
workspace dimensions, respectively. Each entry of G(θ) was implemented by a radial basis
function network that forms a ‘context field’ that changes its activity when recognizing a
particular joint configuration (θ) as inputs [16]. The output of each network gij(θ) is given
by:

(3)

(4)

where k is the index of the basis function, the vector cijkm represents the distance between
the input value θ and the center of the kth basis function, and Aijk is the activation of the
basis function with a Gaussian function where μijkm and σijkm are the centers and the
standard deviations along the dimension m of the kth Gaussian activation function,
respectively. Each basis function is associated with a weight wijk, related to the level of the
data ‘under its receptive field’. The set of weights zijkm allow for locally and linearly
approximating the slope of the data ‘under its receptive field’. These weights were modified
through a learning process described in the next section.

B. Sensorimotor Learning
The learning strategy consists of a sensorimotor exploration (or babbling) phase. Successive
action-perception cycles were performed during which the motor commands were generated
to execute various finger movements to reach random targets located in the 3D workspace
(Fig. 1). Specifically, during each action–perception cycle, random joints angles (ΔθR; R
denotes random movements) were endogenously generated from current joint configurations
(denoted by θ) that were provided as inputs to the neural architecture as well as to the
humanoid finger in order to reach the corresponding joint configuration. Simultaneously, the
corresponding spatial displacements (Δx) of the fingertip in the 3D workspace was recorded
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by a motion capture system (Optotrak®) and then provided to the cortical model. Then,
based on these spatial displacements, the cortical model estimated the joint angles (Δθ̂) that
were compared to the corresponding random joint movements, providing therefore an error
signal that guided the adaptation of the network parameters (e.g., wijk, zijkm in (3); for
further details on the model implementation, see [11]–[14]).

C. Performance Assessment of the Cortical Model
After the learning period during which the internal model of the inverse kinematics of the
humanoid finger was encoded, the performance of the cortical model was first assessed by
performing 3D center-out reaching movements towards 12 targets placed in three different
planes. The targets located in the back (n=3), middle (n=6), and front (n=3) plane involved:
i) a combination of flexion/extension and adduction movements, ii) only flexion/extension
movements and iii) a combination of flexion/extension and abduction movements,
respectively (Fig. 2B). This assessment was also conducted throughout learning to examine
the evolution of the formation of the internal model of the inverse kinematics of the
humanoid finger. In addition, the robustness of this cortical network model was assessed by
performing center-out reaching movements in the presence of perturbations. Namely, the
humanoid finger was subjected to a sudden and brief perturbation representing a substantial
increase of 10° of each estimated joint angle (i.e., computed by the cortical model) to the
robotic finger during both the transient and steady-state phases of the motion. Finally, the
capabilities of this cortical network model to control more complex motion with this
humanoid finger were also investigated. Namely, the finger had to perform several reversal
motions between the inside of two cylinders (~1 cm of diameter) without touching them,
which required continuous and accurate control. The planning system for this task generated
a set of four targets (2 outside and 2 inside each cylinder) that the finger had to successively
reach continuously and accurately. Such a task combined flexion-extension motion of the
MCP and, most importantly, of the PIP and DIP for which it was particularly critical that the
cortical model learned efficiently their mechanical coupling in order to fulfill the task
demand.

III. Results
The performance error and its variability (mean and standard deviation) were progressively
reduced throughout the learning period for the targets located in the back, the middle and
frontal planes. In particular, for all planes considered, the average reaching errors were equal
to 25.98 ± 11.76 mm, 2.20 ± 0.81 mm and 0.51 ± 0.29 mm for the early, middle and late
learning periods, respectively (Fig. 2A). Although the overall errors were small, the highest
error values were obtained for the back and the front plane.

After learning, the cortical network was able to control the humanoid finger. The angular
and linear displacements were sigmoid-shaped while the velocity profiles were generally
single-peaked and bell-shaped. The trajectories were slightly curved and the targets were
accurately reached (Fig. 2B and 3). The findings also revealed that the cortical model was
robust to perturbations while performing reaching movements. Namely, when the
perturbation was applied during both the transient and steady-state phases of the movement,
the trajectory re-converged to the desired position and finally reached the target accurately.
For instance, when the robotic finger had to reach a target placed in one of the most remote
regions of the workspace by inducing a combined movement of flexion-extension and
abduction-adduction, the cortical model was able to reach the target with a similar accuracy
(~1°) for both unperturbed and the same perturbed reaching movement (Fig. 4A–B).
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Finally, the results also revealed that the cortical model was able to control the humanoid
finger in order to perform continuously and accurately multiple reversal movements between
two cylinders without touching them (Fig. 4C–D).

IV. Discussion
A cortical network architecture functionally similar to the motor and premotor cortices was
able to learn an internal model of the inverse kinematics of a humanoid robotic finger that
included a mechanical coupling between the PIP and the DIP joints as in humans.
Specifically, this cortical model was able to: i) produce similar linear and angular kinematics
features as those observed in humans for finger motion and grip production [1],[17]; ii)
maintain an accurate and robust control in the presence of perturbations and iii) perform
relatively complex motions such as multiple reversals via continuous and accurate
movements.

More specifically, once the inverse kinematics was learned, the cortical model was able to
control the robotic finger in order to reach accurately the targets exhibiting sigmoid-shaped
angular and linear displacements as well as single-peaked and bell-shaped angular and linear
velocity profiles. For some targets a secondary (small) peak was observed in specific joints,
which was in accordance with results from human studies [1]. Furthermore, consistent with
previous experimental studies, the cortical model produced slightly curved trajectories [1],
[17]. Overall, the present kinematics results obtained with a physical humanoid robotic
finger confirm and extend those previously obtained in simulations [13],[14]. Although the
kinematics obtained both in simulation and during this robotic experiment, appear to be
comparable to those observed in humans, further testing is currently in progress to directly
compare these kinematics with their human counterparts while performing the same task
(e.g., center-out reaching, reversal movements).

In addition, this cortical network model was robust to sudden perturbations of substantial
magnitude. This is an important and desirable feature since in daily tasks humanoid hands/
fingers may be subjected to various types of perturbation during finger reaching and
grasping, especially in unstructured environments [2]. Also, the changes observed in the
joint angles computed by the cortical model under perturbed conditions indicate that the
perturbations were not corrected through feedback but compensated by the cortical model
that changed its on-line activity to re-converge to the targets. Further assessment of
robustness is currently underway, including perturbations applied for a longer time period.
Finally, the model was able to perform more complex tasks than single reaching motions,
such as continuous multiple reversal movements under accuracy constraints. The good
performance with such a task suggests that our cortical model is able to perform ecologically
valid finger movements involving fine manipulations. In particular, these findings suggest
that our cortical neural network learned accurately the coupling between the PIP and the
DIP, and provides therefore a biologically-inspired solution for the inverse kinematics
computation applied to humanoid hands/fingers that include a coupling of the two last joints.
Such a cortical architecture provides a possible viable on-line alternative solution to the
inverse kinematics problem, something that is particularly challenging for robotic fingers
including coupled joins without using look-up tables combined with linear interpolation [5],
[6].

Overall, the current findings suggest that our cortical model can reproduce accurate, flexible
and robust ecologically valid finger reaching movements when controlling an actual
anthropomorphic robotic finger. This is important since such a cortical model could provide
a robust, accurate and flexible bio-mimetic controller for humanoid finger/hand motions

Gentili et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 June 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



providing thus a unique manual ability and versatility that is critical for many daily activities
[1].

However, future work will need to further assess the capabilities of this cortical network to
robustly perform other complex ecologically valid tasks such as typing, drawing and
tracking tasks as well as its flexibility during on-line control for targets switching during on-
going movements.

Although the focus of the present work was the kinematics, future work will also focus on
the dynamics of the fingers since, for now, our cortical network model does not include any
component accounting for biomechanical dynamics (e.g., gravity, inertia). This could be
studied by incorporating a model of the cerebellar structures that have been considered to
encode internal models of the inverse dynamics [8], [9]. The long term goal of this research
is to design a bio-mimetic controller providing adaptive, robust and flexible control of
dexterous robotic/prosthetic hands.
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Fig 1.
Cortical model for inverse kinematics learning and control of the humanoid finger. (A)
During learning, the Endogenous Random Generator (ERG) generates random angular
displacements (ΔθR) resulting in spatial displacements (Δx) of the robotic finger. These
displacements allow the cortical model to compute an estimation of angular displacements
(Δθ̂) and compare them to those randomly generated. (B) During performance, the cortical
model executed 3D reaching movements to various spatial targets. A PID controller received
as input the angular joints computed by the cortical model and provided the corresponding
pressure to the pneumatic muscles to move the finger accordingly. A movement-gating GO
signal (not shown) triggered voluntary motion [8].
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Fig 2.
(A) Performance (average reaching error and standard deviation) of the cortical model
during early, middle and late learning. (B). Reaching trajectories of the humanoid fingertip
(the stick diagram represents the initial position of the humanoid finger) toward the spatial
targets (rear (blue), middle (red) and front (black) planes) placed in the workspace.
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Fig 3.
Typical angular (left column) and linear (right column) kinematics generated by the cortical
model after learning. Here the target reached is indicated in Fig. 2B by a purple circle.
Displacement and velocity profiles are depicted in the first and second row, respectively.
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Fig 4.
(A–B) Response of the cortical model to two successive perturbations applied during the
transient and steady-state phases of motion to a remote target by inducing flexion/extension
and abduction/adduction motion. Effects of the perturbation on the trajectory (A) and the
joints angles (B, computed by the model) of the humanoid finger. (C–D): Continuous and
accurate performance (trajectories (C) and joint angles (D)) of the robotic finger during
multiple reversal movements between two cylinders.
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