Abstract:
New wavelet-derived features and strategies that can improve autonomous EEG classifier performance are presented. Various feature sets based on the morphological structur...Show MoreMetadata
Abstract:
New wavelet-derived features and strategies that can improve autonomous EEG classifier performance are presented. Various feature sets based on the morphological structure of wavelet subband coefficients are derived and evaluated. The performance of these new feature sets is superior to Guler's classic features in both sensitivity and specificity. In addition, the use of (scalp electrode) spatial information is also shown to improve EEG classification. Finally, a new strategy based upon concurrent use of several mother wavelets is shown to result in increased sensitivity and specificity. Various attempts at reducing feature vector dimension are shown. A non-parametric method, k-NNR, is implemented for classification and 10-fold cross-validation is used for assessment.
Published in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Date of Conference: 28 August 2012 - 01 September 2012
Date Added to IEEE Xplore: 10 November 2012
ISBN Information:
ISSN Information:
PubMed ID: 23366794