Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) has been associated with motor abnormalities. Given the importance of the vestibular system in motor control, the investig...View moreMetadata
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) has been associated with motor abnormalities. Given the importance of the vestibular system in motor control, the investigation of the peripheral vestibular response is a promising area of ADHD research, which could lead to an improved understanding and management of the disorder. This study aimed to investigate the evoked peripheral vestibular response to rotational stimuli in ADHD affected adults, using Electrovestibulography (EVestG). Data was collected from 6 ADHD affected adults (2 males, 4 females) and contrasted with that of a Control group comprised of 30 individuals (10 males, 20 females). Raw data was 120 Hz high pass filtered and analyzed using the Neural Event Extraction Routine to identify local field potentials, which represent the summed activity of the components of the inner ear. The inter field potential intervals (IFPI) were calculated as the time intervals between field potentials. Analysis of the IFPI indicated that the ADHD group exhibited significantly shorter periods between field potentials generated in the right ear during left rotational acceleration than Controls (unpaired, two-tailed Student's t-test assuming unequal variance, p<;0.05). However there was no significant difference between groups for left ear signal during right rotational acceleration. This preliminary study provides an indication as to the possibility of lateralized, abnormal inner ear responses to kinematic stimuli in the ADHD affected population. However, further studies are required to validate and elucidate this data.
Published in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Date of Conference: 28 August 2012 - 01 September 2012
Date Added to IEEE Xplore: 10 November 2012
ISBN Information:
ISSN Information:
PubMed ID: 23366969