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Abstract— Brain-Computer Interfaces (BCI) based on the
voluntary modulation of sensorimotor rhythms (SMRs) induced
by motor imagery are very prominent because allow a contin-
uous control of the external device. Nevertheless, the design
of a SMR-based BCI system that provides every user with a
reliable BCI control from the first session, i.e., without extensive
training, is still a big challenge. Considerable advances in
this direction have been made by the machine learning co-
adaptive calibration approach, which combines online adapta-
tion techniques with subject learning in order to offer the user
a feedback from the beginning of the experiment. Recently,
based on offline analyses, we proposed the novel Common
Spatial Patterns Patches (CSPP) technique as a good candidate
to improve the co-adaptive calibration. CSPP is an ensemble
of localized spatial filters, each of them optimized on subject-
specific data by CSP analysis. Here, the evaluation of CSPP in
online operation is presented for the first time. Results on three
BCI-naive participants show indeed promising results. All three
users reach the threshold criterion of 70% accuracy within one
session, even one candidate for whom the weak SMR at rest
predicted deficient BCI control. Concurrent recordings of the
SMR during a relax condition as well as the course of BCI
performance indicate a clear learning effect.

I. INTRODUCTION

Brain Computer Interfaces (BCI) based on sensorimotor
rhythms (SMRs), make use of the voluntary modulation in
the alpha (8-12 Hz) or beta (13-20 Hz) frequency band of
the electroencephalography (EEG) activity over sensorimo-
tor areas during limb movement imagination to obtain, by
proper real time processing of the brain activity, a control
signal for an external device. Despite a great progress in
BCI research (see [1] for a review), still 20-30% of the
healthy population is not able to reach the level criterion
of 70% of accuracy, above which users feel to have ob-
tained BCI control, as assessed in [2] by a psychological
study for two-class BCI with communication applications.
A significant contribution to this research field comes from
the machine learning (ML) approach, which utilizes newly
developed algorithms to learn subject-specific parameters and
adapt automatically to the user’s brain signals (see [3]). In
particular, Common Spatial Patterns (CSP), spatial filters
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which are optimized specifically for each user, successfully
enhanced the performance for two-class BCIs (see [4] for
a review). Furthermore, thanks to the new ML-based co-
adaptive calibration [5] techniques, feedback can be provided
from the beginning of the experiment so that the user is
helped to find an appropriate strategy to modulate his/her
SMR. Recently, Common Spatial Patterns Patches (CSPP)
have been proposed [6], an ensemble of CSP filters which
are a compromise between Laplacian filters (LAP) and CSP.
Due to its simplicity, CSPP algorithm is more robust against
overfitting than CSP, because it is applied to fewer number of
electrodes. Additionally, thanks to its locality, CSPP is very
suitable to be used in combination with co-adaptive calibra-
tion techniques. CSPP is also global and complex, because
it takes into account all channels available and requires a
feature selection among all patch forms and positions. In
comparison to LAP, used in [5], CSPP employs the class
information and thus is more optimized to subject and task.
These properties have been already demonstrated in our
previous works: in [6] performance accuracy of CSPP have
been offline compared to LAP, CSP and a regularized CSP
version ([7]), while in [8] CSPP were shown to outperform
LAP in a simulation of online adaptation in combination
with a subject-independent classifier. Here, the application
of CSPP in an online study is presented for the first time,
in order to effectively assess the suitability of the algorithm
to BCI experiment and its performance. Additionally to the
methods used for the offline analyses in [6] and [8], the
combination of CSPP with unsupervised online adaptation
is exploits in the last run of the experiment, necessary to
assess the real classification accuracy as it would be in a
real life application. The resulting is a complex and very
flexible BCI system, which proves to optimally adapt to the
user’s brain actity.

II. EXPERIMENTAL SETUP

Three volunteers participated to a single session of motor
imagery (MI) BCI. All three were novice SMR-based BCI
users. For the class combination left/right, in each trial, an
arrow directed either to left or to right appears in the center of
the screen, together with a cross. The participant has to imag-
ine respectively the left hand or the right hand movement.
The brain activity is online processed and classified and the
cross moves depending on the classifier output either to the
left or to the right. A trial is correctly classified, if at the end
of the trial the cross lies in the part of the screen indicated
by the arrow. The class combinations left/foot and foot/right
are also possible, where for the foot movement imagination
the arrow is directed to the bottom of the screen.



Five runs were acquired in total. Except for the first run,
where 80 trials per class combination were recorded, one
class combination was chosen based on the first run and
used for the succeeding runs (100 trials each). For online
classification, every 40 ms features are calculated as the log-
variance of the band-pass and spatially filtered data (last 750
ms) and classified by Linear Discriminant Analysis (LDA).
After each run, the algorithm training procedure described
in Sec. III-E.1 was carried out, to eventually adjust subject-
specific parameters and spatial filters. Methods used in each
run are described in the following section.
At the beginning, after three runs and at the end of the
experiment, a relax measurement was carried out, where the
user had to relax and open or close the eyes depending on
a vocal instruction. This measurement contained 10 trials
per condition (eyes open/closed). EEG was recorded by 62
Ag/AgCl electrodes concentrated on the central areas were
recorded.

III. METHODS

A. CSP

CSP is a discriminative algorithm (see [4]) which deter-
mines spatial filters W from band-pass filtered EEG data
X such that the difference between the variances of the
filtered data XCSP = X ·W for the two classes is maximized.
This is done by solving the following generalized eigenvalue
problem:

Σ2W = (Σ1 +Σ2)WΛ (1)

where Σ1 and Σ2 are the covariance matrices of data be-
longing to class 1 and class 2, respectively. Each column of
W is a spatial filter wi corresponding to the eigenvalue λi,
the i−th element of Λ, with i = 1,2, ...,Nc where Nc is the
number of channels in X. Choosing N filters, the filtered data
XCSP

′ = X ·W′ will have smaller dimensionality N < Nc and
the two classes will be maximally separated by their variance.
The filters are chosen as described in section III-G.

B. CSPP

CSPP is the application of CSP analysis to small sets of
channels (patches), and the concatenation of the resulting
features. Applying CSP analysis on just few channels, the
risk of overfitting is reduced in comparison to usual CSP
because the number of parameters to fit for each patch is less.
In comparison to LAP, CSPP has the benefit to use the class
information, hence to likely obtain a better performance.
The patches can include a different number of surrounding
channels (see Fig. 1 for the patches used in this study). Also
the position of the centers of the patches can be selected,
depending on the number of channels available and on the
task. For each patch/center, a number of filters equal to the
number of the involved channels results by CSP analysis and
one filter per class is selected. For Np centers, an ensemble
2Np filters is then obtained (Np filters per class) and N filters
with N < Np are selected as described in section III-G.

Fig. 1. Patch configurations centred on C3.

C. LDA

The decision function D(x) of a LDA is reported in (2),
where w is the vector normal to the hyperplane, x is the
feature vector and b is the bias:

D(x) = wT x+b (2)

For the calculation of w = Σ̂−1 (µ̂2− µ̂1), the estimated
pooled covariance matrix Σ̂ and the class means µ̂1 and µ̂2
are required. The bias b = wT µ̂ can be calculated without
class information based on the estimated pooled mean µ̂ =
(µ̂1 + µ̂2)/2, if both classes can assumed to the equally sized
(see [9]).

D. Run 1: subject-independent

1) Pre-trained CSPP and LDA: For each binary combina-
tion of motor imagery classes, CSPP filters were calculated
from a data base of 48 successful BCI performers (data
described in [11]). The data were concatenated, band-pass
filtered in a broad band 8-32 Hz (previously chosen by offline
analyses) and epoched in the time interval 750-3750 ms after
stimulus onset. Six CSPP filters were then obtained by CSP
analysis on three small patches (the first in Fig. 1) centered
on C3, Cz and C4. A LDA classifier was trained on the
six CSPP features (log-variance of the band-pass and CSPP
filtered data).

2) Adaptation: After each trial, the LDA is adapted by
updating the class means µ̂1 and µ̂2 and the inverse of the
pooled covariance matrix Σ̂−1 in the calculation of the normal
vector w and pooled mean µ̂ (see [5] for more details). Note
that this adaptation method is supervised, i.e., exploits the
information on the true target.

E. Runs 2-3-4: re-training

1) Algorithm training procedure: A semi-automatic pro-
cedure selected a subject-specific frequency band and time
interval were the classes are maximally separated (see [4] for
details). Data are band-pass filtered and epoched using these
subject-specific parameters. Twenty-four centers distributed
in the motor areas were used. For each patch form in Fig. 1,
a generalization error is calculated by 5-fold cross validation
where for each fold: 1) two to six CSP features and two to
six CSPP features (out of 48) were calculated on the training
set and used to train a LDA corrected by shrinkage and 2)
the test set was spatially filtered by the up to twelve selected
CSP+CSPP filters and the resulting features classified by the
trained LDA. The patch form with the best generalization
error was selected. Finally, CSP, CSPP (with the chosen
patch form) and LDA were trained on the whole data set.
For run 2, just 24 channels concentrated on the motor area



were used for CSP training. For run 3 and 4, 48 channels
were used, since it was found to be the optimal number
of channels from a large database study [10]. Furthermore,
while the training preceding run 2 and 3 used all previous
trials, i.e. 80 and 180 respectively, for run 4 the trials of run
2 and run 3 were used, i.e. 200 trials.

2) Adaptation: After each trial, CSPP was recalculated
using just the last 60 trials, resulting in new spatial filters and
eventually new positions and number of features. The new
CSPP features were concatenated to the fixed CSP features.
The LDA classifier was then re-trained on the new features.
This adaptation, which is still supervised, provides flexibility
by CSPP with respect to spatial location of modulated brain
activity, but also robustness by the fixed CSP. Offline analysis
on a large database showed that the combination of CSP and
CSPP gives better performance than CSP or CSPP alone.

F. Runs 5: unsupervised

Training was done as described in section III-E.1, using
the trials of runs 2, 3 and 4, i.e. 300 trials. The bias of the
LDA in (2) was adapted by updating the pooled mean µ̂

after each trial. For more information on LDA unsupervised
adaptation see [9].

G. Feature Selection

The same feature selection procedure is applied for CSP,
CSPP and CSPP feature ensemble. In particular, the variance
vi, j = w j

T XiXi
T w j is calculated of the j-th feature within

each trial i and the corresponding ratio of medians is taken
as score s j of that feature:

s j =
m j,2

m j,2 +m j,1
(3)

where m j,1 and m j,2 are the medians of vi, j across all trials
belonging to class 1 and 2 respectively. A score s j close
to zero indicates that the corresponding feature maximizes
the variance for class 1, a score close to one represents
then class 2. Choosing the features with an extreme score
implies that the log-variance features of the two classes will
be maximally separated. This ratio of medians score has been
suggested in the CSP review [4] as being more robust with
respect to outliers than the classical eigenvalue score. Two
to six features with at least 1 feature per class are selected
by heuristics.

IV. RESULTS

A. Relax measurement

Following [11], given a recording during a relax condition,
it is possible to determine a prediction of the SMR-BCI
performance of users. The power spectral density (PSD)
at rest is modeled as 1/ f noise spectrum with one, two
or three peaks in the alpha, beta and gamma frequency
bands. A higher peak gives better opportunity to voluntary
suppress the respective rhythm, which is required for BCI
control. The strength of the SMR (called SMR predictor)
was calculated as the maximum distance between the PSD
and the fit of the noise spectrum. This predictor is useful to

estimate the SMR-BCI performance of BCI-naive users. If
a user with exemplary spectra at rest performs poor in the
BCI experiment, the chance is high that either the user used
a wrong motor imagery strategy or the online algorithms
did not work properly. In Fig. 2 the PSD, the corresponding
fit of the noise and the value of the SMR predictor are
visualized for the three users for the relax measurements
acquired before (blue) and after (red) the BCI session. In
particular, the Laplacian channel with the highest r2 in the
last run was selected, epochs of 2 seconds were extracted and
averaged and the PSD in the frequency band 2-34 Hz was
calculated. It can be clearly seen that the first user exhibits
an exemplary PSD, with high SMR predictor value. After
the BCI session, his SMR even improved, despite a little
increase of the noise. The second user has an unusual PSD,
with a large beta peak higher than the alpha peak. Moreover,
the PSD of the second user is somehow noisy, because it is
almost everywhere higher than the noise spectrum (this last
point is not taken into account by the SMR predictor). Also
for this user, the SMR improved substantially. The third user
has no peak in alpha at all and a very small hump between
beta and gamma with a consequent small SMR predictor.
Even this user shows an improvement in the SMR, since the
noise is smaller and the hump sharper after the BCI session.
The chance for this user to control a BCI, especially in the
very first session, is very low.
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Fig. 2. PSD at rest (solid lines) and corresponding fitted noise spectrum
(dashed lines) the relax measurements before (blue) and after (red) the BCI
session. The number indicates the corresponding SMR predictor values, i.e.
a measure of the user’s potentiality to obtain BCI control.

B. Performance

The online performance is depicted in Fig. 3. The perfor-
mance is computed in percentage of correct trials. The black
dashed line marks the performance threshold of 70%. The
red dashed line marks the performance level of 50% (random
performance in two-class systems). The performance of the
first run, with subject-independent methods, is shown in pink.
The performance of runs 2, 3 and 4, with re-training of
CSPP and LDA is depicted in orange, while the last run with
unsupervised adaptation is coded in green. The first user,
with high SMR predictor, reached the 70% already in the first
20 trials, because his SMR is exemplary and thus similar to



those of the data used for the subject-independent classifier.
Moreover, his performance increases rapidly, thanks to the
co-adaptive approach, and reached 100% in two consecutive
blocks in run 3. A drop in the performance happened in one
block in run 4, whose causes need a detailed analysis of the
data. The second user, with middle SMR value, improved
the performance from block to block within the first run,
reaching 75% in the last block. In the successive two runs, his
performance continues to increase reaching 95% of accuracy.
It then decreases a bit, probably also because of tiredness,
as reported by the user himself. The third user, with very
low chance of successful BCI control, shows a continuous
improvement in the performance and was able to reach 75%
in one block of the last run (the average accuracy of the last
run is 68%).
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Fig. 3. Performance within each run. One dot for each group of 20 trials,
each horizontal bar is the mean accuracy of the run. Colors indicare the
different adaptation levels: magenta for subject-independent (run 1), orange
for re-training (runs 1-3) and green for unsupervised (run 5).

V. DISCUSSION

A first comparison of the performance with the results
in the previous co-adaptation studies [5] and [12] allows to
observe that, with CSPP, the first user started already by 70%,
while the average of good performing users (already BCI
experienced) in [5] started from 60% and novice participants
in [12], which resulted also to be good performing users, also
did not perform on average so well in the first run (first block
accuracy was 62%, first run accuracy was 73% against 80%
in this study). Neither in [5] nor in [12] middle performing
users were able to reach 70% in the first run as in this study
happened. More importantly, the unsupervised adaptation
with CSPP was not affected by a drop in performance as
in the previous co-adaptive studies and as expected since
no re-training is employed. Finally, the clear learning effect
visible in the performance of the third user, it has never been
shown before for a BCI novice with no peak in the alpha
band.
It is important to note that part of the performance increase in
the third user is probably due to the continuous adaptation
of the algorithms, since the SMR improvement cannot be
considered enough to explain it. The drop in performance
in run 4 for subject VPgae is a starting point for further

improvement of the CSPP. In fact, the cause of this drop
should be probably searched in a sensitivity of CSPP to
artifacts. This problem affects in general the co-adaptive
calibration system, because the system is adapted after each
trial, even if it contains artifacts. From this point of view,
CSPP is more sensitive than Laplacian, because it uses class
information and adapts faster.
A very similar study with CSPP has been already con-
ducted with 17 volunteers who previously participated to
BCI standard (i.e. with calibration session and without online
adaptation) as well as to co-adaptation studies. All users
except for one reached better performance than the previous
studies (which were conducted at least 2 years before). The
authors preferred to report here just the results on BCI naive
users because the analysis and the discussion of the other
results require a comparison with the previous studies and
thus more space. Moreover, a large number of subjects would
not allow the analysis of each single subject, as done in this
contribution.
Future work will analyze in particular the robustness of our
proposed novel CSPP method with respect to non-stationarity
in experimental conditions; here we expect a higher overall
stability. In addition it will be interesting to understand the
differences in the brain reorganization that happens during
co-adaptive training for different subject types and to explore
possible changes in the user brain plasticity.
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