Abstract:
The studies on seizure prediction problem have shown great improvement these years. Machine learning based seizure prediction method shows great performance by doing patt...Show MoreMetadata
Abstract:
The studies on seizure prediction problem have shown great improvement these years. Machine learning based seizure prediction method shows great performance by doing pattern recognition on high-dimensional bivariate synchronization features. However, the computation loading of the machine learning based method may be too high to meet wearable or implantable devices with the power and area constraints. In this work, channel selection is proposed to reduce the channel number from 22 to less than 6 channels and therefore more than 93.73% of the computation loading is saved through the method. The best result shows successful rate of 60.6% in 3-channel cases of ECoG database and successful rate of 70% in 3-channel cases of EEG database.
Published in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Date of Conference: 28 August 2012 - 01 September 2012
Date Added to IEEE Xplore: 10 November 2012
ISBN Information:
ISSN Information:
PubMed ID: 23367091