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Abstract— Buruli ulcer, a disease caused by infection with
Mycobacterium ulcerans, is one of the most neglected but
treatable tropical diseases. In this paper, a novel segmentation
scheme is proposed to detect the border of Buruli lesions
in cross-polarization dermoscopic images that were obtained
under white light illumination. The method consists of three
main steps: first, segmentations in different color spaces by
thresholding are fused to form an initial contour, then a level
set segmentation is applied to both the luminance and color
components of the image, and finally, decisions for each pixel
are made by a support vector machine classifier. Experimental
results with 26 images show that the proposed methodology
outperforms other state-of-art segmentation approaches for
Buruli images.

I. INTRODUCTION

Buruli ulcer (BU), a skin disease caused by an infection
with Mycobacterium ulcerans, is the third most common
mycobacterial disease after tuberculosis and leprosy and
mainly affects remote rural African communities [1] [2]. The
clinical picture of BU usually starts as a painless subcuta-
neous nodule, or other pre-ulcer forms including papules,
plaques, and edema, then it evolves into a painless ulcer with
undermined edges, and finally leads to extensive scarring,
contractures, and deformations with possible total loss of
articulation function [3]. However, if patients seek treatment
at the early stage, antibiotics can prove to be successful to
prevent the irreversible deformity and long-term functional
disability [4]. So detecting BU disease in the early stage is
of particular importance.

Dermoscopy, a non-invasive diagnostic technique for in
vivo observation of pigmented skin lesions, has shown a
great potential in accurate detection of skin lesions at an
early stage [5]. As the first processing step, automatic
segmentation is of paramount importance, since it affects the
accuracy of the subsequent steps [6]. However, segmentation
in BU images is a challenging task due to several reasons:
a) the appearance of variegated coloring inside the lesion,
b) the complex texture of surrounding normal skin, and
c) the irregular and fuzzy borders of lesions. In previous
studies, several algorithms have been proposed for lesion
border detection. For instance, adaptive thresholding [7],
which automatically selects the color component with the
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highest entropy and sets up a threshold based on the color
histogram, can achieve good results when there is good
contrast between lesion and skin, but usually fails when the
modes from the two regions overlap. Erkol et al. [8] [9]
proposed a method based on Gradient Vector Flow (GVF)
snakes with an automatic initialization, but it performs poorly
when the edges have gaps or spurious edge points present.
Silveira et al. [10] [11] [12] applied the Level Set approach
to locate lesion boundaries, but it requires user interaction
of two mouse clicks to obtain a good performance.

In this paper, we developed an automatic segmentation
scheme for BU images. Firstly, segmentations from different
color spaces by thresholding are fused to form an initial
contour; subsequently, a level set approach is applied on
both illumination and color channels; and finally, decisions
for each pixel are made by a support vector machine (SVM)
classifier. The experimental results obtained when the pro-
posed method was applied to 26 images are reported in the
next sections along with a comparison with other state-of-art
segmentation approaches for BU images.

II. METHODS

A. Overview of Chan-Vese Level-Set Approach

Given an image I ⊂ Ω, the region-based active contour
model [13] assumes that I is formed by two regions of ap-
proximately piecewise constant intensity c1 and c2 separated
by a curve C, which minimizes the energy-based objective
function:

F (c1, c2, C) = µ · length (C)
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where the parameters µ > 0 and λ1, λ2 > 0 are positive
weights for the regularizing term and the fitting term, re-
spectively.

When applying the level set approach [14], we can
represent the curve C as the zero level set C (t) =
{(x) |φ (t, x) = 0} of a higher dimensional level set function
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Φ (t, x). Then the energy function can be rewritten as
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where H is the Heaviside function. The evolution of φ
is governed by the following motion partial differential
equation (PDE):
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where δε (Φ) is a regularized version of the Dirac delta
function. The evolution can be solved using finite differences,
by updating each c1,i and c2,i by the average of channel Ii
calculated inside (C) and outside (C).

B. Proposed Segmentation Scheme

The key idea of the proposed method simply starts by
considering the common foreground and background ob-
tained by the luminance and color components as lesion and
skin, respectively, and then applying a supervised classifier
to the remaining pixels. The procedure involves three steps:
a) contour initialization, b) contour evolution, and c) pixel
classification.

1) Contour initialization: The selection of initialization
points has a significant influence on the performance and
convergence speed of level set approaches. In Silveira [11],
the initialization is completed by a user defined rectangle
which covers the significant lesion colors. Another intuitive
thought for automatic initialization is to exploit the segmen-
tation results of simple thresholding. However, thresholding
in gray scale images can not guarantee a good initialization
because color represents a more distinctive feature in BU
lesions, and there is no single color channel that is perfect
for all lesions. Thus, we developed an automatic initialization
method based on fusion of the segmentations from different
color components.

First, to avoid the influence of illumination, we apply
Otsu’s thresholding [15] to the color components of L*a*b*,
HSV, YCbCr, and L*u*v* color spaces, respectively. Then
the preliminary segmentations obtained from these eight
color channels are fused by a voting system, where a
voting threshold of two was empirically determined for our
dermoscopy image dataset. Finally, the convex hull of the
fused mask after morphological processing is considered as
the initial contour, so as to guarantee that the initial mask
covers most of the main lesion area.

2) Contour evolution: In BU images, lesions always
present as a central part with distinctive colors, such as
red, yellow, or dark brown, accompanied with surrounding
dyspigmented or erythematous areas which behave as a
smooth transition to normal skin. From a clinical point of
view, a correct boundary should include both parts. In this
case, the color component is useful to detect the central color
structures, while the luminance component is helpful to find
the complementary surrounding areas.

After the first step of initialization, level set approaches
are implemented in both color and luminance channels.
Luminance information can be obtained from the gray scale
images. For color information, first, the correlation coeffi-
cient between the initial fused mask and the segmentation by
thresholding from each individual color channel is calculated,
and then the highest correlated color channel is selected.

3) Pixel classification: After contour evolution, two
masks are obtained based on color and luminance respec-
tively. In general, the color-based mask focuses only on the
central areas of the lesion, and misses areas close to the
actual boundary, while the luminance-based mask includes
part of normal skin due to the smooth transition. To overcome
this problem, a SVM classifier is applied.

Firstly, pixels belonging to the common foreground of both
masks are considered as lesions, while those belonging to the
common background are considered as normal skin. Then,
pixels from common foreground are sampled as positive
training data, while negative data come from the common
background. The pixel values from the RGB and L*u*v*
color spaces forms a six-dimensional feature vector to train
the classifier. In this way, the remaining pixels can be
classified as lesion or normal skin.

C. Data and Procedure

The proposed method was validated using a set of dermo-
scopic images of 26 suspected BU lesions. Images were 24
bit full color with typical resolution of 4320 × 3240. Data
were collected in endemic BU communities of Cote d Ivoire
and Ghana with the help of local collaborators to the project
that included medical doctors, District Surveillance Officers,
and community health workers, using a DermLite II Multi-
Spectral device (www.dermlite.com) for image acquisition.
The device could provide white light for crosspolarization
epiluminescence imaging, blue light for surface coloration,
yellow light for superficial vascularity, and red light for
deeper coloration and vascularity, using 32 bright LEDs–
eight per color. This device was attached to a Sony Cybershot
DSC-W300 high-resolution camera, which provided a reso-
lution of 13.5 MP. The study has received IRB approval from
the Human Subjects Protection Committee at the University
of Houston, as well as in Ghana and Ivory Coast, and all
subjects and their parents gave written informed consent to
the study in their native language.

In the preprocessing step, images were first downsampled
to 1080 × 810 pixels, and then processed with a 5 × 5
median filter and a Gaussian lowpass filter of the same size
to remove extraneous artifacts and reduce the noise level.
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For postprocessing, morphological filtering was applied, and
a distance transform [16] was used to make the borders
smoother. As ground truth for the evaluation of the border
detection error, for each image, manual segmentation was
performed by a field expert in Africa just after acquisition.

Three different metrics were used to quantify the boundary
differences, namely XOR error rate (XER) [6], true detection
rate (TDR), and false positive rate (FPR) [11], defined as
follows,

XER(A,M) = (A⊕M)/M × 100%
TDR(A,M) = (A ∩M)/M × 100%
FPR(A,M) = (A ∩M)/M × 100%,

(4)

where A denotes the area of automatic segmentation and M
denotes the manual segmentation area obtained by the expert.

III. EXPERIMENTS AND RESULTS

A. Image Example

An example for the proposed algorithm for BU lesion
segmentation is shown in Fig. 1, where Fig. 1(a) shows
the original lesion with the manual segmentation from the
expert. The lesion consists of two main parts: central areas
with variegated distinctive colors, and the surrounding ery-
thematous areas which exhibit a smooth transition to normal
skins. Also, the complex texture of normal skin caused by the
infected skin makes the segmentation task more challenging.
Fig. 1(b) shows the initial contour obtained by the fusion
of thresholding segmentations from different color channels.
The initial mask covers the most significant lesion colors.
Fig. 1(c) and Fig. 1(d) present the segmentation results after
contour evolution in the color and luminance components,
respectively. It is obvious that the segmentation in the color
channel is good at detecting the central area of a lesion with
significant colors and misses the surrounding areas, while
segmentation in the luminance channel is able to find the
surrounding area, but always includes part of normal skin
because of the smooth transition. The combination of color
and luminance information by pixel classification is shown
in Fig. 1(e), while Fig. 1(f) presents the final segmentation
result after morphological postprocessing. The latter is close
to the expert’s segmentation and detects both parts of the
lesion successfully.

B. Comparison with Other Methods

We compared the proposed segmentation method (based
on Fusion and Classification, FC) with three popular methods
applied to skin lesion segmentation, namely adaptive thresh-
olding (AT) [7], gradient vector flow (GVF) [8], and level
set (LS) [11] segmentation. The initialization of contour for
GVF and LS were both completed by the first step of our
segmentation scheme. For GVF snake, the elasticity, rigidity,
viscosity, and regularization parameters were α = 0.05, β =
0.01, γ = 1, and k = 0.6, respectively. The maximum
iteration number was 75. The LS method was processed in
the L*a*b* color space, using parameters λ1 = 1, λ2 = 1,
and µ = 0.1. The maximum number of iterations was 150.
For our segmentation scheme, the same parameters as in the

(a) original BU image with
manual segmentation

(b) initial mask by fusion

(c) level set segmentation in
color channel

(d) level set segmentation in
luminance channel

(e) segmentation after pixel
classification

(f) final segmentation result

Fig. 1. Segmentation example for BU lesion. Red line is automatic
segmentation, and blue line is the ground true from an expert dermatologist

LS method were used for the contour evolution step, where
5000 foreground and 5000 background points were randomly
sampled to train the classifier. The segmentation results
obtained are shown in Fig. 2. Among these approaches, the
AT and LS methods were disturbed by the illumination of
the surrounding normal skins, the GVF method converged
to some noisy or spurious edge points, while our method
successfully detected both the central and surrounding areas
of the lesion, resulting in an accurate border.

To quantify the performance of different segmentation
methods, three different metrics, namely XER [6], TDR, and
FPR [11] were used to measure the segmentation accuracy,
as in (4). XER is computed as the number of pixels for
which the automatic and manual borders disagree divided
by the number of pixels in the manual border. It takes into
account two types of errors: pixels classified as lesion by
the expert that were not classified as such by the automatic
segmentation and pixels classified as lesion by the automatic
segmentation that were not classified as such by the expert,
while the TDR method focuses on the former and the FPR
focuses on the latter, respectively. From Tab. I, we can see
that LS method can achieve the highest TDR at the cost of
a higher FPR, because it always includes lesions and part
of normal skins. On the contrary, the GVF method performs
the best in FPR at the cost of missing some actual lesion
areas. Overall, our segmentation method can achieve the best
XER while keeping a relatively high TDR and low FPR, and
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(a) segmentation by AT (b) segmentation by GVF

(c) segmentation by LS (d) segmentation by proposed
method

Fig. 2. Segmentations by different methods. Red line is automatic
segmentation, and blue line is the ground true from an expert dermatologist

TABLE I
SEGMENTATION PERFORMANCE OF DIFFERENT METHODS

Methods XER (std) TDR (std) FPR (std)
AT 39.46±26.14 84.84±17.22 24.30±30.00

GVF 24.91±12.02 79.10±12.97 4.17±4.08
LS 26.54±19.78 90.06±8.44 16.60±21.42
FC 19.25±9.28 85.70±9.86 5.15±5.36

outperform other state-of-art segmentation methods in BU
images.

IV. CONCLUSIONS

In this paper, a novel segmentation scheme for skin
lesions of BU disease is presented. The proposed method
consists of three steps: contour initialization, contour evo-
lution, and pixel classification. Firstly, segmentations from
different color spaces by thresholding are fused to form
an initial contour estimate; subsequently, a level set ap-
proach is applied on both the luminance and color channels,
and finally, decisions for each pixel are made by a SVM
classifier. Experimental results on 26 images show that the
proposed method outperforms other state-of-art segmentation
approaches for BU images.
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