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Abstract – Even though electrocution has been recognized — 

and studied — for over a century, there remain several 

common misconceptions among medical professional as well 

as lay persons. This review focuses on “low-power” electro-

cutions rather than on the “high-power” electrocutions such 

as from lightning and power lines. Low-power electrocution 

induces ventricular fibrillation (VF). We review the 3 estab-

lished mechanisms for electrocution: (1) shock on cardiac T-

wave, (2) direct induction of VF, and (3) long-term high-rate 

cardiac capture reducing the VF threshold until VF is in-

duced. There are several electrocution myths addressed, 

including the concept — often taught in medical school — 

that direct current causes asystole instead of VF and that 

electrical exposure can lead to a delayed cardiac arrest by 

inducing a subclinical ventricular tachycardia (VT). Other 

misunderstandings are also discussed. 1 

 

1. INTRODUCTION 

 

Electrical accidents are commonly misclassified as either 

low or high voltage with an arbitrary cutoff usually set at 

1000 V.  The voltage cutoff leads to some diagnostic er-

rors. The 1,000,000-25,000,000 V Van de Graff generator 

does not cause injury as the power and current are almost 

zero. Nor does the 8 kV static shock (30 A peak) outlined 

in the IEC (International Electrotechnical Commission) 

standard.
1
 A better classification is by power with a 1000 

W cutoff.  

 The so-called “high-voltage” electrocutions in-

clude lightning and power line sources. A 7600 V power 

line can easily deliver about 60 kW of power to someone 

standing on the ground (or on an aluminum ladder) and 

touching the power line with a tool. Injuries can include 

arrhythmias, burns, superficial or deeper nerve damage, 

muscle damage with rhabdomyolysis and subsequent re-

nal problems, and paralysis. Actual myocardial damage is 

often demonstrated.
2-9

 

 Such levels of systemic damage lead to numer-

ous mechanisms of death and go beyond the scope of this 

review. Hence, this review will focus on low-power elec-
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trocutions which cause death without causing systemic 

damage. 

 

2. ESTABLISHED MECHANISMS 

 

Arrhythmia Induction 

The electrical injury of greatest concern is a lethal ven-

tricular arrhythmia. The signature rhythm of electrocution 

is ventricular fibrillation (VF). It was long thought that 

there were only 2 means of inducing VF in the healthy 

heart with electrical currents. The first is the “shock on T” 

which involves delivering a single strong electrical pulse 

during the time of the T-wave to instantly cause VF. 
10, 11

 

The second method requires causing extremely rapid car-

diac capture — typically > 450 BPM (beats per minute) 

— which induces VF within a few seconds in a normal 

heart.
12-14

  This is classical “electrocution.” This electri-

cally-induced VF mechanism takes far less current than 

“T-shock” induction but also several pulses (typically at 

least 6 pulses.)
15

 It has recently been recognized that there 

is a 3
rd

 method of inducing VF, namely with long-term 

high-rate cardiac capture causing sufficient ischemia to 

lower the VF threshold (VFT) to allow for the induction 

of VF.
16  

See Table 1 for a summary. 

Single Pulse into the T-wave 

The T-wave represents the time when the myocytes are 

returning back to their “resting” state. Some cells are ab-

solute refractory while some are relatively refractory to 

electrical stimulation. Still others are depolarized and 

amenable to stimulation. A shock of appropriate charge 

during the T-wave leads instantly to VF from reentry.
17

 

That is why the T-wave is referred to as the “vulnerable” 

portion of the heartbeat.  For blunt trauma, mechanical 

energy delivered into the T-wave can also induce VF with 

a condition referred to as “commotio cordis.”
18, 19

  

Dorian, et al reported that delivering electrical charge 

into the T-wave sufficient to induce VF took a mean of 19 

J (joules) with external patches.
20

 One can calculate that 

this corresponds to an electrical charge of about 100,000 

µC (microcoulombs) assuming typical external defibrilla-

tor capacitances.
20

  Swerdlow had a patient (unpublished) 

that he induced with only 1 J which (assuming typical 

capacitances) corresponds to about 20,000 µC of deliv-

ered electrical charge.
21

 The value of 5,000 µC is what the 

IEC considers to be at the 50% probability of VF risk 

with unidirectional impulse currents of short durations 

delivered into the T-wave.
22
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Multiple Pulses And “Direct” VF Induction 

Sufficiently strong repetitive external currents delivered 

to the heart will capture epicardial cells. According to the 

“multiple wavelet” hypothesis of VF, formation of new 

wavelets occurs through the process of wave break (or 

wave splitting), in which a wavelet breaks into new 

(daughter) wavelets.
23

 Wave break occurs at sites of elec-

trophysiological inhomogeneity, where regions of refrac-

toriness provide opportunities for reentry to form. Epicar-

dial cells are intrinsically heterogeneous in their repolari-

zation properties.
24

 This intrinsic heterogeneity provides a 

substrate for reentry formation during rapid (~ 450 BPM) 

capture. When a portion of the incoming wave front en-

counters refractory tissue while other portions continue to 

propagate, wave break occurs leading to VF.  

The VFT is the amount of current required to in-

duce VF in a particular subject with a particular electrode 

location. Reilly, in his text “Applied Bioelectricity” com-

piled all published studies on the effects of a pulse-train 

duration on the direct electrical induction of VF.
25

 The 

VFT went down, with increasing pulse-train durations, 

until the exposure duration reached 1-5 s. This is reflected 

in recognized standards, as shown in Figure 1 taken from 

Reilly.
26

 In other words, if an electrical current does not 

fibrillate within about 5 s it will not fibrillate with longer 

durations, (except as shown below by the 3
rd

 mechanism 

of extended high-rate capture ischemically lowering the 

VFT).  

 

 

Figure 1. UL (Underwriters Laboratories) and IEC standards for 

VF risk suggest that VF is either induced or not in the first few 

seconds. 

Long-Exposure High-Rate Cardiac Capture Ischemi-

cally Lowering VFT 

High-rate cardiac capture with current densities of about 

40% of the VFT will cause hypotensive collapse and will 

lead to VF after 90 seconds.
27

 The current densities for 

this hypotensive response are above the threshold for con-

tinuous hypotensive capture.
28, 29

 Continuous cardiac cap-

ture at rates of >220 BPM, in swine, can eventually lead 

to VF. The required durations for this are on the order of 

minutes rather than seconds. 

Prolonged rapid capture reduces cardiac output 

at the same time that the heart muscle continues to need 

blood. This causes ischemia sufficient to lower the VFT 

in about 90 seconds in swine. In large mammals, with 

ischemia the VFT is cut to about 40% (of the direct-

induction VFT).  

The ability of rapid short pulses to induce VF is 

approximately equal to a 60 Hz AC current with RMS 

current of 7.4 times the aggregate current of the rapid 

short pulses.
30

 For example the aggregate current of a 

nerve stimulator with 100 µC  pulses with a rate of 20 

PPS is 2 mA. This has the VF-inducing capability of an 

AC source of 14.8 mA RMS. Note: The US FDA refers to 

this aggregate current value (charge • pulse rate) as the 

“average” current.
31

 

Table 1. Mechanism of electrocution for various shock dura-

tions. 

Duration Mechanism Qualitative Current 

Levels 

1-10 ms Single Pulse Shock on 

T 

Requires very strong 

current. 

1-5 s 

(train) 

Direct induction of VF Possible with strong 

electric current in any 

part of a ventricle. 

5-80 s* 

(train) 

No known mechanism Unlikely with electrical 

current unless current 

is at the edge of the 

VFT. 

90-300 s 

(train) 

High-rate cardiac cap-

ture leading to ische-

mia lowering VFT. 

Possible with weaker 

current in any part of a 

ventricle. 
*There are some controversial data with 80 s exposures. However, this 
was in unventilated anesthetized swine.32, 33 

 

Figure 2 shows the 3 distinct time scales for the induction 

of VF by electrical current. The T-shock induction occurs 

instantly and is shown by the vertical line at 0 seconds. 

Direct (multiple pulse) induction of VF occurs typically in 

0.1 - 5 seconds with the current required decreasing rapid-

ly. Long-duration continuous high-rate capture (with cur-

rent densities ~40% of the VFT) leads to an ischemically 

reduced VFT after ~ 90 s, or longer. It is important to note 

— and clearly shown by Scott’s canine data —  that there 

is no known mechanism for VF induction taking 5 – 60 

s.
34

 The Nimunkar swine results required a median 150 s 

(300 s with 50% duty cycle of 5 s on and 5 s off) to in-

duce VF with high-rate capture.
35

 Finally, Roy showed 

that a cardiac arrest would always occur within 300 s with 

hypotensive capture in canines.
36

 In swine current dura-

tions between 5 and 80 seconds are not shown to cause 

VF.
27

  

 

3. SPECULATED MECHANISMS 

 

There are 4 speculated additional mechanisms for low-

power electrocution. These are: respiratory arrest, asystole 

from direct current, induction of an intermediate ventricu-

lar tachycardia (VT), and accommodation of the VERP 

(ventricular effective refractory period). 
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Figure 2. There are 3 distinct shock duration periods with which 

VF can be electrically induced. 

 

Respiratory Arrest 

Sufficient thoracic current can temporarily induce respira-

tory arrest. This current can be lower than the threshold 

for VF especially if it is conducted hand-to-hand as that 

can provide a pathway via the trapezius muscles capturing 

the phrenic nerves near the neck. There is even a case of 

respiratory compromise from a TENS (Transcutaneous 

Electronic Nerve Stimulator) delivering maximum current 

across the chest for angina pectoris.
37

 Lightning can cer-

tainly cause respiratory arrest by first causing permanent 

damage to the brain.
8
 

 However, the speculated mechanism of an elec-

trically-induced respiratory arrest raises several questions. 

The most likely scenario would be someone grabbing an 

exposed source with the total pathway resistance limiting 

the current to a level between 20-50 mA AC. Note that 

this is a very narrow band of currents. The current must 

be greater than both the “let-go” levels and the minimum 

for respiratory arrest.
38, 39

 However, it must be < ~ 150 

mA (depending on the current pathway, and the subject’s 

weight) or VF would be instantly induced.
40

 And, it must 

be less than 40% of the VFT or high-rate cardiac capture 

will lead to VF in 90 seconds which is sooner than a death 

from respiratory arrest.
16

 AC currents of 50-80% of the 

VF threshold will also cause temporary cardiovascular 

collapse due to rapid regular excitation.
28, 41

 

 Electrical bilateral stimulation of the forearm 

muscles will quickly cause fatigue as electrical muscle 

stimulation is very fatiguing, per se, and the bilateral 

stimulation is tiring.
42-44

 Thus, the subject would release 

the connection. No documented case of low-power elec-

trocution via respiratory arrest has been identified. There-

fore it is most likely that persons with apparent respirato-

ry arrest due to transthoracic current flow will die from 

VF rather than from asphyxia itself. 

 

Asystole from Direct Current 

It is a common misunderstanding in the medical fields 

that AC causes VF but that DC (or a battery) causes asys-

tole. This is reinforced by the US Medical Licensing Ex-

amination which sometimes has a question related to the 

myth that batteries can cause asystole.
45

 This is, of course 

false as batteries can be touched directly to the epicardi-

um and will only produce VF.
17, 46

 It is hard to pinpoint 

the source of this myth. Portable external now-obsolete 

monophasic defibrillators would sometimes cause post-

shock asystole. (Modern biphasic defibrillators can also 

cause post-shock PEA and asystole.) They were classical-

ly referred to as “DC” defibrillators to differentiate them 

from the utility-powered AC defibrillators. Also, lighting 

can certainly cause asystole through nerve or cardiac nod-

al damage and lightning is, indeed,  a DC shock.
47, 48

  

 

VT and Delayed Cardiac Arrest 

A speculation — that has been raised to attempt to argue 

for a long gap between an electrical exposure and VF — 

is that the electrical current induced an intermediate VT.  

Important definitions: 

1. Sustained VT: a VT that lasts for more than 30 se-

conds. 

2. Unstable VT: a VT that causes symptoms — most 

commonly passing out (syncope). Note that the “un-

stable” refers to the blood pressure being unstable — 

not the VT.  

 

The intermediate VT induction speculation is scientifical-

ly unsupportable for several reasons: 

1. A sustained VT cannot be induced in the absence of a 

myocardial reentrant substrate like nonhomogenous 

scar caused by a prior myocardial insult (myocardial 

infarction, myocarditis, etc.).
49-52

 By definition, only 

a sustained VT would possibly allow a delay to car-

diac arrest of more than 30 seconds. A small excep-

tion is HCM (hypertrophic cardiomyopathy). In some 

HCM patients a sustained VT can be induced with 

specialized pulse sequences but this is not expected.
49

 

In a swine study, a VT was induced in a normal heart 

(probably by a large infusion of epinephrine) but it 

only persisted for 7 seconds.
53

 Meanwhile the blood 

pressure was 40 mm suggestive of the unstable nature 

of the rhythm with ensuing hemodynamic compro-

mise. (The subject would have lost consciousness had 

it not been already anesthetized). 

2. A VT that will lead to VF is almost always an “un-

stable” VT. An unstable VT will degenerate into VF 

within 34 ± 7 seconds in humans.
54

 Hence, a VF de-

layed by, say, 60 seconds is extremely unlikely.  

3. Any VT that leads to VF has such a rapid heart rate 

that it almost always leads to immediate syncope 

(loss of consciousness).
54, 55

 

4. VT induction generally requires specialized pulse 

timings and is generally not inducible with steady 

rate currents such as those from utility power, DC, or 
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an ECD.
52, 56

 Using specialized pulse timings, Cua 

was able to induce monomorphic VT in patients with 

a history of VT; however, steady AC stimulation uni-

versally induced only VF.
57

 

5. VT has never been documented in the literature as a 

cardiac rhythm in ARDs (arrest-related deaths) where 

an electronic control device (ECD) was temporally 

used.
58, 59

 In many cases of deaths considered tem-

poral with ECD usage, the suspect was being cardiac 

monitored before any arrhythmias developed. And in 

these incidents VT was also not seen.  

6. There are rare cases of VT following electrical injury, 

but none progressed to a cardiac arrest. Haim report-

ed a VT in a 17 yo male electrocution who was hypo-

tensive yet conscious.
60

 Jensen reported a 45 yo 

woman that had VT after an alleged exposure to 430 

VAC.
61

 This case is suspicious as she did not present 

until 60 days after the alleged exposure. Neither of 

these cases led to VF or any type of cardiac arrest and 

hence are not directly relevant. 

 

There are some very uncommon VTs that do not require a 

diseased heart. These include: 

1. Idiopathic normal heart VTs (originating in the RV 

and LV outflow tracts, His Purkinje system, aortic 

cusps, and sub valvular regions) 

2. Catecholaminergic Polymorphic VT (CPVT)  

3. Torsades de Pointes (TdP) is a polymorphic VT 

spontaneously induced by metabolic (low K, low Ca 

or low Mg) or drug (dofetalide, sotalol, some psycho-

tropics, and methadone) related effects. 

 

These are not relevant as they are either nonsustained, 

difficult to electrically induce, not associated with cardiac 

arrest, or very symptomatic and associated with 

syncope.
56

 
62

 
63

 

Several literature reviews have cast doubt on the 

possibility of a delayed cardiac arrest from low power 

electrical stimulation.
64-66

 

There is a controversial example of a swine with an 

electrically-induced VT lasting 3 minutes which appears 

— at first blush — to contradict the human data that a 

sustained VT generally requires an infarct scar.
33

  

1. The pig had received 80 seconds of high-rate cardiac 

capture which would cause severe myocardial ische-

mia. In addition, the anesthetized pig was not allowed 

to breath during the 80-second ECD application (40 s 

on, 10 s break, and then 40 s on), which would have 

exacerbated the ischemic acidosis. This pig may have 

started out with a normal heart but it was far from 

normal when this VT was documented. 

2. Not only was this seen in only 1 of the 6 swine tested, 

a sustained VT has never been documented in nu-

merous swine studies where the animals were al-

lowed to breath.
27, 53, 67-71

  

3. The high rate of the VT would have resulted in a loss 

of pulse and consciousness and thus is not applicable 

to the typical human ARD case where delayed VF is 

speculated. 

 

VERP Accommodation 

The Ventricular Effective Refractory Period (VERP) ac-

commodation theory suggests a new mechanism for elec-

trical stimulation inducing VF in, say, 37 seconds after 

failing to do so in the initial 5 seconds. This contradicts 

all published literature which shows that an electrical cur-

rent insufficient to induce VF, in a normal heart, in 5-

seconds cannot do so until 90 seconds of exposure. 
12-14, 26, 

28, 34, 36, 72-76
  This VERP theory is based on the idea that 

the high-rate continuous capture would cause the VERP 

to gradually shorten and this would lead to VF.  

The VERP is the heart’s own “governor” that 

safely limits the rate at which the heart can beat. For a 

healthy human at rest, the VERP normally ranges around 

200-250 ms, even though the heart may be beating at a 

much slower rate. This means that, with a VERP of 250 

ms, the maximum heart rate, with continuous electrical 

stimulation below the VFT, is about 4 times a second or 

240 BPM. Catecholamine (adrenaline) release in the body 

from agitation and stress might also shorten the VERP. 

However, the theory is that increased heart rate, along 

with the catecholamine increase caused by the agitation 

shortens the VERP to something like 200 ms, allowing 

the capture rate to increase to 300 BPM. That new rate 

further shortens the VERP, which increases the heart rate 

still further, perhaps triggering irregular captures (the 

capture ratio does not necessarily remain constant) that 

adds to the disorganization of the heart beat, until a rate of 

450 BPM results which produces VF.  

The VERP theory suggests that over a century of 

published research on VF induction and electrical safety 

standards is wrong.  

 The argument behind the VERP theory appears 

to be that intermittent stimulation changes everything. 

E.g. the movement of the chest wall changes the spacing 

between a chest contact and the heart and thus cardiac 

capture is irregular. There are 3 major problems with this 

VERP theory speculation: 

1. Electrical safety studies used ventilated animals so 

their chests were being inflated regularly by the ven-

tilator. None of these researchers reported intermit-

tent capture even though the heart’s thoracic position 

was changing. 

2. The animal VF safety studies would slowly increase 

the AC current until VF was finally induced. For ex-

ample, Scott used steady currents for 60 seconds at 

each current level.
34

 As he would get close to the VF 

threshold, he would have certainly had some inter-

mittent capture. This never led to any surprisingly 

low VF inductions being reported. 

3. Human endocardial pacing studies show that even 

20 µC pulses — subthreshold since delivered during 

the refractory period — extend rather than shorten 

the VERP.
77

 This directly contradicts any speculation 
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— that intermittent capture from a rapid source 

would facilitate VERP accommodation — as the non-

capturing pulses would be subthreshold during the re-

fractory period and would extend it. 

 

The VERP accommodation theory apparently rests on an 

animal study.
78

 Unfortunately, for this VERP theory, hu-

man studies are not suportive. The Zipes group paced 

human ventricles at 150 BPM for 30 minutes.
79

 They con-

cluded (abstract), “In contrast to traditional concepts of 

refractoriness, after the termination of sustained rapid 

ventricular rates, VERP prolonged.”  

Even if the VERP does shorten, it does not adjust 

fast enough or far enough. Morady et al published a hu-

man study of 23 patients. 
80

 The study found that the 

VERP adjustment took 93 ± 34 seconds (233 ± 85 beats) 

of continuous rapid cardiac capture (150 BPM) to get to a 

200 ms VERP. And none of the patients ever had VF. The 

same study also looked at the effects of catecholamine in 

6 of the patients. They found that the minimum VERP 

was 202 ± 7 ms vs. 206 ± 12 ms (NS) with and without 

catecholamine influence.  

Finally, the Morady study maintained the rapid 

cardiac capture for 10 minutes (n= 12 patients) and the 

VERP never decreased below 200 ms. And, VF was never 

seen. Thus the scientifically unsupported speculation that 

this VERP theory mechanism would eventually lead to 

VF is unfounded and contrary to the published human 

literature. 

The Morady study, used 100 and 150 BPM pac-

ing and then used Methods “A” and “B” to determine the 

VERP. Only the 150 BPM Method B represents relevant 

human data since it alone achieved a 200 ms VERP as 

required for the VERP theory. For the relevant 150 BPM 

Method B results the fastest responding patient achieved 

his lowest VERP after 76 beats or 30 seconds. This was 

the extreme case and VF was still not induced. 

 Also, none of the recent published animal or 

human data shows any increase in the capture rate with 

time from rapid stimulation at 1120 BPM. Figure 2 of 

Nanthakumar shows a steady rate of capture over a 15-

second ECD application.
53

 The Cao pacemaker capture 

case shows steady capture measured at 281-290 ms cycle 

length.
81

 The Ho human capture case showed a steady 

capture rate of 240 BPM (CL = 250 ms).
82

 Lakkireddy 

never saw the capture rate increase during hs multiple 

animal tests.
70, 71

 

 

4. CONCLUSIONS 

 

There are the 3 established mechanisms for low-power 

electrocution: (1) shock on cardiac T-wave, (2) direct 

induction of VF, and (3) induction of VF from long-term 

high-rate cardiac capture ischemically lowing the VFT. 

We examined 4 other proposed mechanisms: (1) respira-

tory arrest, (2) asystole from direct current, (3) induction 

of an intermediate ventricular tachycardia, and (4) ac-

commodation of the VERP (ventricular effective refracto-

ry period). None of the speculated mechanisms are scien-

tifically supportable. 
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