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The Accuracy and Precision of Signal Source Localization with Tetrodes

Chang Won Lee1, Agnieszka A. Szymanska2, Yuji Ikegaya3, and Zoran Nenadic4

Abstract— Four-sensor microelectrodes, commonly referred
to as tetrodes, have the ability to significantly increase the
signal-to-noise ratio of neuronal extracellular recordings. They
also provide spatio-temporal information about extracellular
action potentials (EAP) which may be used to localize and
resolve individual neuronal signal sources. Since the relative
position of sensors and neurons whose EAPs are recorded is not
known during in vivo experiments, the accuracy and precision of
neuronal source localization algorithms remain untested. In this
study, electrical signals generated by a stimulator were recorded
simultaneously with four recording micropipettes immersed in
artificial cerebrospinal fluid. The location of the source was
estimated using the multiple signal classification algorithm, with
an accuracy and precision of ∼4 µm and ∼7 µm, respectively.
These results suggest that in vivo localization and resolution of
individual neuronal sources is feasible.

I. INTRODUCTION

Multi-sensor electrodes have the ability to significantly
increase the signal-to-noise ratio (SNR) of neuronal extra-
cellular action potential (EAP) recordings. The best-known
representatives of this technology are 4-sensor microelec-
trodes, commonly referred to as tetrodes. In comparison to
their single-sensor counterparts, tetrodes have been shown to
substantially improve the yield and separation of neurons in
multi-unit extracellular recordings [1]. Other advantages of
tetrodes include their ability to identify bursting neurons [1]
and track the activity of isolated neurons over time [2]. In
addition, due to their sensor geometry, tetrodes have been
proposed as suitable tools for neuronal sources localiza-
tion [3]. The ability to localize neurons through recorded
EAPs may significantly enhance the extracellular recording
process in both acute and chronic experiments. It may also
lead to more accurate interpretation of scientific data.

This article presents experimental verification of the
tetrode’s ability to localize electrical sources in an artificial
cerebrospinal fluid (aCSF). Our experimental setup utilizes
four glass micropipette electrodes for recording and a single
micropipette electrode for stimulation. Signals recorded by

This work was supported in part by the National Science Foundation,
under Award #1056105 to Z. Nenadic and Award #0914303 to C.W. Lee

1C.W. Lee was with the Department of Biomedical Engineering,
University of California, Irvine, CA 92697, USA. He is now with
the Samsung Dallas Technology Lab, Richardson, TX 75082, USA
changwonl@gmail.com

2A.A. Szymanska is with the Department of Biomedical Engineering,
University of California, Irvine, CA 92697, USA aszymans@uci.edu

3Y. Ikegaya is with the Laboratory of Chemical Pharmacology, Graduate
School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033,
Japan ikegaya@mol.f.u-tokyo.ac.jp

4Z. Nenadic is with the Department of Biomedical Engineering and
Department of Electrical Engineering and Computer Science, University
of California, Irvine, CA 92697, USA znenadic@uci.edu

the four micropipettes were processed using the Multiple Sig-
nal Classification (MUSIC) algorithm [4]. Estimated source
locations were then compared to the true source location, as
determined from a microscope image. The accuracy of these
estimates (∼4 µm) is comparable to our previously reported
results [5]. In addition, since the precision of the estimated
source locations (∼7 µm) is smaller than the diameter of a
typical soma, we hypothesize that this method may be able
to resolve individual neuronal sources based on their EAPs.

II. BACKGROUND AND SIGNIFICANCE

Several neuronal source localization algorithms have been
proposed and used in vivo [3], [6], [7], [8], [9]. These
methods employed various approaches ranging from simple
heuristic EAP generative models [6], [7], to more biophys-
ically realistic models, such as monopole [3], dipole [9],
and line source [8] approximations. However, since these
experiments were performed in vivo where the exact location
of neurons is unknown, the localization results could not be
validated.

Source localization with a tetrode has been experimentally
validated in our recent study [5]. Briefly, a commercial
tetrode (Thomas Recording, Giessen, Germany) placed in
close proximity to a stimulating single-sensor microelec-
trode, was submerged in saline and used to record a stimulus
pattern. The relative positions of the tetrode and stimulator
were precisely determined from microscope images by plac-
ing both electrodes in the same focal plane. However, the
inability to image the location of tetrode sensors, except
for the sensor at the tip, precluded direct validation of
our localization algorithm. To circumvent this problem, the
tetrode was moved to four different locations while its tip
was held in the focal plane. The same stimulus pattern was
recorded at each position, and recorded signals were aligned
to the onset of the stimulus. This configuration, referred to
as a “virtual tetrode,” allowed data from the four different
tip locations to be treated as if recorded simultaneously.

While the virtual tetrode configuration permits validation
of localization results, it ignores non-stationary phenomena
at the electrode-medium interface that may occur by the
time the tetrode is moved from one location to another.
By simultaneously recording the stimulus pattern with four
spatially distributed electrodes, the present study aims to
address this deficiency. It also provides a more realistic
recording medium (aCSF) and a comprehensive analysis of
the accuracy and precision of localization results.

The ability to localize neuronal signal sources may have
significant implications to both acute and chronic extracel-
lular recordings. In acute conditions, it may alleviate the

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 531



tedious process of electrode positioning and adjustment. It
may also improve the performance of control algorithms for
autonomous neuron isolation and tracking [10], [11], [12].
In chronic conditions, tracking neuronal sources over time
may allow population migration trends to be estimated. This
may in turn help resolve changes in recorded firing patterns
due to migration from those due to other factors such as
learning and plasticity processes, reactive gliosis, and scar
tissue formation.

III. MATERIALS AND METHODS

Five glass micropipettes (see Fig. 1) filled with aCSF
were placed in a recording chamber maintained at 32◦C.
Micropipettes 1-4 served for recording, while micropipette S
served as a stimulator. The recording chamber was immersed
in aCSF consisting of 127 mM NaCl, 26 mM NaHCO3, 3.3
mM KCl, 1.24 mM KH2PO4, 1.0 mM MgSO4, 1.0 mM
CaCl2, and 10 mM glucose. Electric field potentials recorded
by the four micropipettes were acquired through an Axopatch
700B amplifier (Molecular Devices, Union City, CA) with
a sampling rate of 20 kHz. The stimulating micropipette
generated a train of ten 38-µA pulses, each pulse lasting
10 ms, followed by a 40-ms pause. To reduce the effects of
noise, a total of seven such trains were recorded. Images were
collected during data acquisition with an up-right microscope
(Nikon, Tokyo, Japan) and captured with a cooled CCD
camera (iXon DV885, Andor Technology, Belfast, UK). The
experimental procedure was performed in accordance with
the University of Tokyo guidelines.

Fig. 1: Microscope image of the experimental preparation.
The micropipette tips lie in the microscope focal plane.
The micropipettes were subsequently brought closer by a
micromanipulator (see Fig. 3).

The recorded pulse trains were aligned to the onset of
the first pulse, corrected for dc offset, and averaged over
the seven epochs. Source location was then estimated using
the MUSIC algorithm [4], which has been successfully
used in electroencephalogram [13], [14] and magnetoen-
cephalogram [15] signal source localization. In general, the

algorithm models measurements from a c-sensor array, Ψ ∈
Rc×1, as a response of the following stochastic linear system:

Ψ(t) = Ms(t) + w(t) (1)

where t = 1, 2, · · · , T , (T is the number of time samples),
s ∈ RNs×1 is a vector of signal amplitudes from Ns

sources, w ∈ Rc×1 is additive noise, and M ∈ Rc×Ns is
a mixing matrix, whose columns, referred to as lead field
vectors (LFVs), represent the system’s response to a unitary-
amplitude signal. Note that (1) is applicable to an arbitrary
number of sensors, c, number of sources, Ns (Ns < c),
and types of sources. If the sources are dipoles, s consists
of their dipole moment magnitudes, and if the sources are
monopoles, s consists of their current amplitudes.

Assuming tetrode measurements (c = 4) are generated by
a monopole source (Ns = 1), the LFV becomes [5], [16]:

M(r) =
1

4πσ

[
1

d1(r)

1

d2(r)

1

d3(r)

1

d4(r)

]T

(2)

where σ is the medium conductivity per unit length, r =
[x, y, z]T is the unknown source location, and di (i =
1, 2, 3, 4) is the distance between the source and sensor i.
The MUSIC algorithm proceeds by finding the source loca-
tion, r?, such that the corresponding LFV is most orthogonal
to the noise subspace EN :

r? = arg min
r

MT(r)ENET
NM(r)

MT(r)M(r)
(3)

where EN ∈ R4×3 can be found by the singular value de-
composition of Ψ1:T , [Ψ(1), Ψ(2), · · · ,Ψ(T )] ∈ Rc×T .
More specifically, the columns of EN are taken as the left
singular eigenvectors of Ψ1:T , corresponding to its smallest
three singular values. While finding the minimum of the
Rayleigh quotient in (3) reduces to calculating the eigen-
vectors of ENET

N [17], the minimization in this case must
be performed numerically due to the nonlinearity in (2). Also
note that σ cancels out in (3), and therefore the estimated
source location is independent of conductivity.

The accuracy of the estimated source location was quan-
tified by calculating the estimation error (bias) defined as:

ε , ‖E{re} − rt‖ (4)

where ‖ · ‖ represents the Euclidean norm, E is the expec-
tation operator (average), re ∈ R3×1 are estimated source
locations, and rt ∈ R3×1 is the true source location.
Similarly, the precision of the estimate is quantified by a
standard radius (generalized standard deviation) defined as:

δ ,
√
δ2x + δ2y + δ2z (5)

where δx, δy and δz are the standard deviations of the x, y
and z components of re, respectively.

IV. RESULTS
The recorded pulse trains, shown in Fig. 2 (Top), were pro-

cessed according to the procedure described in Section III.
As expected, the strongest signals were recorded by sensors
1 and 2, which lied closest to the source [see Fig. 3 (Left)].
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Fig. 2: (Top) A train of 10 pulses recorded by the four
micropipettes (1-4). The traces represent averages over seven
epochs. (Bottom) The same signals after ICF adjustment.

The 10-msec data, corresponding to each of the 10 pulses,
were then used as input to the MUSIC algorithm, yielding
one estimated source location for each pulse [Fig. 3 (Cen-
ter)]. The average over the 10 estimated sources was (-6.45,
43.02, 4.70) µm [B in Fig. 3 (Left)], with the origin defined
at the source, S. This corresponds to an error, ε, of 43.75
µm. While Fig. 3 (Center) shows that the solutions were
consistent in the x-y plane (δx = 0.03 µm, δy = 0.15 µm),
the variance along the z-axis was high (δz = 22.25, µm),
yielding an overall standard radius, δ, of 22.25 µm.

This relatively large bias (∼44 µm) is consistent with
our previous study (bias: ∼41 µm) [5]. It indicates that the
modeling assumptions and, in turn, the constraint imposed
on the LFV (2) may not hold. In the simplest scenario,
this bias can be attributed to medium inhomogeneity and
mitigated by allowing each source-sensor path to have a
different conductivity value. This redefines the LFV (2) as:

M̄(r) =
1

4πσ

[
1

k1d1(r)

1

k2d2(r)

1

k3d3(r)

1

k4d4(r)

]T

(6)

where ki (i = 1, 2, 3, 4) is a constant making each conduc-
tivity value a multiple of some baseline conductivity σ. This
multiplier, referred to as an inhomogeneity correction factor
(ICF), can be found experimentally, provided the distance,
di (i = 1, 2, 3, 4), is known. By assuming that one of the
stimulator-sensor paths has the baseline conductivity, k4 = 1,
the remaining ICFs can be found using (1) and (6), and taking
the expectation of Ψ over the noise distribution:

ki(t) =
d4E{Ψ4(t)}
diE{Ψi(t)}

, i = 1, 2, 3 (7)

where Ψi ∈ R is the ith component of Ψ. Although ki
depends on time, we have shown that its values remain fairly
stable over time [5] and can be estimated by taking the
median value of ki(t). This yielded k1 = 1.20, k2 = 1.04
and k3 = 0.99.

The forward model (1) is then modified as:

Ψ̄(t) = Ms(t) + w̄(t) (8)

where the components of Ψ̄ are Ψ̄i = kiΨi, and those of w̄
are w̄i = kiwi. The MUSIC algorithm can then be executed

using ICF corrected signals, Ψ̄. Fig. 2 shows a comparison
of signals before and after ICF adjustment.

The localization results significantly improved upon ICF
correction. The average estimated source location was (0.20,
0.61, 3.78) µm [A in Fig. 3 (Left)], with corresponding
error ε = 3.83 µm. This is also highly consistent with our
previously reported results (error: ∼3 µm) [5]. Likewise,
ICF adjustment substantially reduced localization variance
(δx = 0.40 µm, δy = 3.50 µm, and δz = 6.27 µm), yielding
a standard radius, δ, of 7.20 µm. The clustering of these
sources is shown in Fig. 3 (Right).

V. DISCUSSION

The sole purpose of ICF adjustment in our analysis was to
validate the performance of the localization algorithm. Since
determining ICFs relies on known distances between the
sensors and the source, ICF adjustment cannot be performed
on blind data collected in vitro or in vivo. Source localization
based on unadjusted signals, however, is likely to result in a
relatively large bias and increased variance. We hypothesize
that increased localization accuracy and precision could be
accomplished by prewhitening or interference suppression
prior to source localization [13].

As suggested in Section IV, the bias is believed to have
been primarily caused by medium inhomogeneity, although
other factors such as medium anisotropy or non-uniform
sensor impedances could play a role. However, preliminary
evidence suggests that impedance inconsistency is not likely
to be the cause, as similar bias values have been observed
in our previous study [5], performed using a single sensor
placed at four recording locations.

Another potential source of bias could be a failure of
the monopole model to accurately describe the source. Our
preliminary in silico work [18], as well as in vivo studies
performed by Mechler and Victor [19], indicate that discrep-
ancies between monopole-generated signals and measured
neuronal signals often result in localization solutions biased
toward the sensors. However, the presence of localization
bias is not specific to neuronal sources, as it was also ob-
served in our previous study [5], with the stimulator designed
to mimic a monopole source. Likewise, the distant placement
of the stimulator’s reference electrode in the present study
suggests that a monopole should be a good approximation of
the electrical field potential in the vicinity of the stimulator.
Based on the above observations, we conclude that the
monopole model is not the source of bias in this and other
studies.

Finally, the main cause for the relatively low precision of
source localization prior to ICF adjustments appears to lie
in the planar sensor geometry. Our unpublished work [18],
simulating 2D sensor arrangement in silico, indicated that
planar arrays generally lack sufficient information about the
source to resolve the third dimension. Depending on the exact
setup geometry and SNR, the sources often tend to cluster
at two geometrically mirrored locations on either side of the
sensor plane. This was observed in the present study, with
the z-coordinates across 10 localization trials clustered at
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Fig. 3: (Left) The final sensor-stimulator configuration. The sensors (the tips of micropipettes 1-4) are marked in green, and
the source (the tip of the stimulating micropipette) is marked in magenta. The average of estimated sources is marked by B.
The equivalent point after ICF adjustment is marked by A. (Center) The estimated locations of 10 sources corresponding to
the 10 pulses before ICF adjustment. (Right) The equivalent plot for the pulse train after ICF adjustment.

either ∼23 µm or −23 µm. Note that this was the main
reason for the relatively large standard radius seen prior to
ICF adjustment (Section IV). This deficiency can be easily
mitigated by using a 3D sensor array.

VI. CONCLUSION

The work presented here builds on previously published
MUSIC localization studies, and further reaffirms the MU-
SIC algorithm’s ability to accurately localize single electrical
sources. Future studies will concentrate on expanding the
algorithm’s ability to characterize the intensity of the source,
and applying it to in vitro and in vivo recording experiments.
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