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Unsupervised segmentation of heel-strike IMU data using rapid
cluster estimation of wavelet features
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Abstract—When undertaking gait-analysis, one of the most
important factors to consider is heel-strike (HS). Signals from a
waist worn Inertial Measurement Unit (IMU) provides sufficient
accelerometric and gyroscopic information for estimating gait
parameter and identifying HS events. In this paper we propose
a novel adaptive, unsupervised, and parameter-free identification
method for detection of HS events during gait episodes. Our
proposed method allows the device to learn and adapt to
the profile of the user without the need of supervision. The
algorithm is completely parameter-free and requires no prior
fine tuning. Autocorrelation features (ACF) of both antero-
posterior acceleration (aAP) and medio-lateral acceleration (aML)
are used to determine cadence episodes. The Discrete Wavelet
Transform (DWT) features of signal peaks during cadence are
extracted and clustered using Swarm Rapid Centroid Estimation
(Swarm RCE). Left HS (LHS), Right HS (RHS), and movement
artifacts are clustered based on intra-cluster correlation. Initial
pilot testing of the system on 8 subjects show promising re-
sults up to 84.3%±9.2% and 86.7%±6.9% average accuracy
with 86.8%±9.2% and 88.9%±7.1% average precision for the
segmentation of LHS and RHS respectively.

I. INTRODUCTION

The analysis of gait parameters is beneficial for assessing
treatment effectiveness, quality of mobility and general health
[1], [2]. Information about gait parameters provides important
diagnostics for balance, functional ability, risk of falls [1].

The current methods for assessing gait parameters are
mostly laboratory-based. They are expensive and not practical
for application in daily life [3]. Force platforms, as the gold
standard, can be used to precisely record the ground reaction
forces exerted by the feet during the gait cycle [4]. Other
popular methods use lower-limb sensors [5], pressure insoles
[6], or stereo-photogrammetric cameras [7].

A waist-worn Inertial Measurement Unit (IMU) is a low-
cost solution for extracting gait parameters [1]–[3], [8]. An
IMU consists of an accelerometer and a gyroscope. Using a
single waist-worn accelerometer, Moe-Nilssen and Tura esti-
mate gait regularity from the autocorrelation function (ACF)
pattern of the mediolateral (ML) and anteroposterior (AP)
acceleration [1], [3]. Using similar setup, Bugané extracts the
gait parameters by identifying important gait events including
heel-strikes (HS) and toe-offs (TO) based on peak detection
and thresholding of the AP and ML acceleration [8]. Similarly,
Köse use the stationary wavelet transform and peak detection
to extract HS & TO events using a single IMU worn on the
lateral side of the pelvis to finally calculate bilateral step length
estimate [2].
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The above methods tend to perform poorly in real-world
situations where the data is noisy, where gait patterns vary in
real-time, and where there is a degree of drift in the placement
of the sensors. To reliably identify HS using an IMU, the
system should be able to distinguish movement artifacts from
HS acceleration patterns. In this paper we propose a parameter-
free HS and stride pattern clustering. The proposed protocol
allows the system to adapt to the user gait pattern over time.

Section II gives an overview of the hardware and software.
Section III describes the feature extraction methods. Section
IV explains the feature clustering results. Section V describes
the experimental settings, results and analysis. Finally Section
VI provides the conclusion and future directions.

II. OVERVIEW

A. Hardware and Software

We use the Shimmer MEMS kinematic module with a
Wireless 9DoF Kinematic daughterboard IMU. The base
package of Shimmer contains a Freescale MMA7361 tri-
axial accelerometer. The daughterboard provides a Honeywell
HMC5843 magnetometer, and an InvenSense500 gyroscope
[9]. The sensor is attached to a belt and positioned on the
right side of the ML axis, similarly to the setup of Köse [2].
The device has been calibrated such that the positive x-axis
points downwards towards the gravity vector, positive y-axis
points forward towards AP vector, and positive z-axis points
sideways towards ML vector. The IMU is sampled at 50Hz.
Prototyping is done using Matlab.

B. Algorithm

A gait sequence is detected using the frequency profile of
both Vertical acceleration (aV ) and ML acceleration (aML)
[1]. A peak detection algorithm is applied to the cadence
signal, particularly the aV segment, to extract HS, TO, and
movement artifacts. On each peak location, gyroscopic and
accelerometric wavelet features are calculated.

The HS features are clustered to 3 classes which are LHS,
RHS, and outliers including TO events and movement artifacts.
LHS and RHS patterns can be recognized based on the
clustered wavelet features. Consecutive HS of the same foot
with similar time difference with aML ACF peak is detected
as a stride [1]. The user’s bilateral stride profile can then be
analyzed from the recognized signals.

III. FEATURE EXTRACTION

The signals measured from a waist-worn IMU provides rich
information that can be used to estimate spatio-temporal gait
parameters, gait events, and gait phases [1]–[3], [8], [10]. This



section provide our proposed feature extraction method for our
experimental configuration.

A. Cadence and Stride Rate Estimation using ACF

Moe-Nilssen proposes that gait parameters can be extracted
by examining the ACF of vertical acceleration aV and ML
acceleration aML [1]. Cadence estimate is found by measuring
the fundamental frequency of aV ACF. Stride rate is found by
performing similar calculations on aML signal.

We have previously used spectrogram analysis and image
processing techniques to detect gait episodes with promising
result [11]. We identify cadence as a tonal frequency over
prolonged time period. Cadence frequency ranges between 0.6
to 2.5Hz (steps per seconds) or 36 to 150 steps per minute. In
this work we simplify the prior algorithm to estimate cadence
using informations from aAP and aML signals.

A cadence can be estimated as follows: We take subseg-
ments with interval of ∆t from aAP and aML signals. Both
signals are filtered using a fourth order Butterworth filter with
cutoff frequencies of 0.5 and 3Hz. Fundamental frequencies
f0 AP and f0 ML are approximated by calculating the spectral
centroids from the resulting power spectra. The AP time-
frequency continuity f0 AP(∆t0 AP) represents cadence, while
the ML time-frequency continuity f0 ML(∆t0 ML) represents
stride rate. A cadence estimate is valid at time ∆τ : ∆τ ∈
∆t0 AP∩∆t0 ML when the condition f0 AP(∆τ)/ f0 ML(∆τ)≈ 2±
0.5 is satisfied. The pseudocode is shown in Algorithm 1.

Algorithm 1 DetectCadence(aAP(∆t), aML(∆t))

1. [ f0 AP, t0 AP]= get f0(aAP(∆t));
2. [ f0 ML, t0 ML] = get f0(aML(∆t));
3. if f0 AP(∆τ)/ f0 ML(∆τ)≈ 2± .5 : ∆τ ∈ ∆t0 AP∩∆t0 ML then
4. return true
5. else
6. return false
7. end if

function f0 = get f0(x(∆t))
1. x̂(∆t)(k∆t) = BPF(x(∆t), fc = [0.5Hz,3Hz])
2. P = |FFT (x̂(∆t))| // N-point FFT

3. f0 =
N−1

∑
n=0

f (n)P(n)/
N−1

∑
n=0

x(n)

4. t0 = ∆t
5. return [ f0, ∆t0]

B. HS Wavelet Features Extraction

The discrete wavelet transform (DWT) detects frequency
localizations at specific times in a signal. A large value at a
time-frequency localization indicates high similarity between
the mother wavelet and the signal at the specified instant. This
quality is especially useful for extracting instantaneous pattern
and frequency changes such as ones imposed by HS and TO
events [4].

HS events produces signals that are morphologically similar
to the Debauchies 4-tap wavelet (db4). This can be seen by

observing the peaks and valleys in the sensory signals around
HS events. HS frequencies are localized around 6 − 8Hz
frequency slot. For fs = 50Hz, DWT at the 2nd level of decom-
position effectively focuses on frequency localization around
6.25− 12.5Hz. We propose that using our configuration, 2nd

level DWT is appropriate for detecting HS events.
The wavelet features that we use are: the 2nd level detail

coefficients (d2) of aAP, aML, aV , ωS, and ωT ; and the 2nd

level approximation coefficients (a2) of ωC. Each coefficient
dimensionality is 11. The total dimension of a HS data is 66.

A particular subject’s LHS and RHS pattern and their
wavelet features are presented in Figure 1. The subject was
walking with cadence of 111.9±7 steps/minute.
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Figure 1: LHS and RHS pattern of subject 7 averaged over 273
RHS and 276 LHS events. Subject was walking with cadence of

111.9±7 steps/minute.



IV. FEATURE CLUSTERING

The general template HS signals have been proposed in
literatures [2], [8]. However, HS pattern of individuals change
over time and are affected by clothes, footwear, walking
surface, cadence, and emotional condition [12]. We propose
that a data-driven approach using data clustering is appropriate
for this particular task. The intention is to design a system that
is able to adapt to pattern changes.

We have recently proposed a lightweight clustering algo-
rithm using swarm-intelligence we term the Rapid Centroid
Estimation (RCE) [13], [14]. We encourage interested readers
to refer to [13] and [14] for further information.

A. HS Clustering

Using RCE, we cluster the wavelet features of the peaks to
segment RHS, LHS and TO events. The cluster optimization
function is the sum of intra-cluster correlation distance. Cor-
relation distance is selected in order to preserve intra-cluster
pattern similarity. A particular clustered data distribution is
shown in Figure 2. We observed that choosing three clusters
provides a representative model based on the visualization of
the feature distribution.
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Figure 2: RCE clustering results of wavelet features.

B. Stride Profile

A stride is indicated by a consecutive HS of the same foot.
A valid stride satisfies the following criteria:

1) The consecutive HS of the same foot have similar timing
to the first ACF peak of aML and the second peak of aAP
and aV .

2) The HS of the opposite foot have similar timing to the
first peak of aAP and aV .

The stride profile of Subject 7 is presented in Figure 3a.
The corresponding ACF profile is presented in Figure 3b.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We tested this method with 8 healthy subjects (5 male,
3 female) aged between 20 and 67 years old). A Shimmer
9DoF IMU was attached to the subject’s waist at the right
side of the ML axis. Each subject was told to walk for five
minutes at a personally selected pace. The number of strides
are counted. The experimental data collection is done in a
house environment to simulate daily living condition.
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(a) Right leg stride accelerometric and gyroscopic signal pattern.
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Figure 3: Right leg stride accelerometric and gyroscopic signal
pattern of Subject 7 averaged over 238 successive strides.

The gait parameters, including cadence and step symmetry,
are calculated using Moe-Nilssen’s method [1]. Accuracy is
calculated by dividing HS positive detection rate by total
number of steps. Precision is calculated by dividing HS true
positive detection by the total number of true and false
positives. The HS profile for each subject is obtained by
averaging correct detections. The general HS profile for all
subject is obtained by averaging each subject’s HS profiles.
Table I shows the experimental results.

Table I shows that our proposed method has on average
84.3%±9.2% and 86.7%±6.9% accuracy with 86.8%±9.2%
and 88.9%±7.1% precision on LHS and RHS segmentation.
The LHS and RHS profile of each user are also unique to each
individual. The general HS profile shows similarity to the one
proposed by Köse [2]. To our knowledge, we are the first to
present reports regarding the precision of a HS segmentation
method using a waist worn IMU.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Identifying HS events is important for determining bilateral
gait parameter. We have shown that using a waist-worn Inertial
Measurement Unit (IMU) on the ML axis, gait parameters
and gait events, especially LHS and RHS, can be estimated.
We have proposed a simple, adaptive, and parameter-free
method for HS segmentation. Our proposed method using
ACF, Wavelet features and RCE yields promising results based
on our experimental data. In the near future we plan to
investigate variations of the method outlined in this paper.



TABLE I: Experimental summary of the proposed method on each subject

No. Age Gender Cadence Step Symmetry Accuracy/Precision HS Profile †

(steps/min) L / R LHS RHS LHS RHS

1 65 M 103.2±7 47.5%±3%
55.2%±4%

71.4% /
74.3%

82.8% /
85.0%
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2 27 F 92.1±5 48.5%±2%
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3 25 M 84.9±13 49.1%±3%
49.5%±4%

84.1% /
85.2%

85.9% /
88.5%
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4 67 M 112±13 56.1%±8%
49.4%±5%
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7 62 F 111.9±7 51.4%±3%
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8 20 M 120.5±7 49.8%±3%
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Summary 42.1±19.4 109.8±19 50.2%±4.4%
51.9%±4.09%

84.3%
± 9.2%
/ 86.8%
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† – . – : aV ;ωT —— : aAP;ωC – – – : aML;ωS x axis labels are t(s)
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