Abstract:
Multiclass classification is an important technique to many complex bioinformatics problems. However, their performance is limited by the computation power. Based on the ...Show MoreMetadata
Abstract:
Multiclass classification is an important technique to many complex bioinformatics problems. However, their performance is limited by the computation power. Based on the Apache Hadoop design framework, this study proposes a two layer architecture that exploits the inherent parallelism of GA-SVM classification to speed up the work. The performance evaluations on an mRNA benchmark cancer dataset have reduced 86.55% features and raised accuracy from 97.53% to 98.03%. With a user-friendly web interface, the system provides researchers an easy way to investigate the unrevealed secrets in the fast-growing repository of bioinformatics data.
Published in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 03-07 July 2013
Date Added to IEEE Xplore: 26 September 2013
Electronic ISBN:978-1-4577-0216-7
ISSN Information:
PubMed ID: 24109986