Abstract:
Within brain-machine interface systems, cortically implanted microelectrode arrays and associated hardware have a low-power budget for data sampling, processing, and tran...Show MoreMetadata
Abstract:
Within brain-machine interface systems, cortically implanted microelectrode arrays and associated hardware have a low-power budget for data sampling, processing, and transmission. Recent studies have shown the feasibility of data transmission rate reduction using compressed sensing on detected neural spikes. They provide power savings while maintaining clustering and classification abilities. We propose and analyze here a low-power hardware implementation for spike detection and compression. The resulting integrated circuit, designed in CMOS 65nm technology, consumes 2.83 μW and provides 97% of data rate reduction.
Published in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 03-07 July 2013
Date Added to IEEE Xplore: 26 September 2013
Electronic ISBN:978-1-4577-0216-7
ISSN Information:
PubMed ID: 24110148