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Abstract— This work presents EEG-based Brain-computer
interface (BCI) that uses error related brain activity to im-
prove the prediction of driver’s intended turning direction. In
experiments while subjects drive in a realistic car simulator,
we show a directional cue before reaching intersection, and
analyze error related EEG potential to infer if the presented
direction coincides with the driver’s intention. In this protocol,
the directional cue provides an initial estimation of the driving
direction (based on EEG, environmental or previous driving
habits), and we focus on the recognition of error-potentials it
may elicit. Experiments with 7 healthy human subjects yield an
average classification 0.69±0.16, which confirms the feasibility
of decoding these signals to help estimating driver’s turning
direction. This study can be further exploited by intelligent
cars to tune their driving assistant systems to improve their
performance and enhance the driving experience.

I. INTRODUCTION
Automobile driving is a complex task that requires a high

level of attention. Around 10% to 33% traffic accidents
are due to human factors, e.g. conversation, wireless com-
munication or music [1]. So far, driving assistant systems
have been developed to avoid potential traffic accidents or
reduce driving stress by monitoring driving actions (e.g.
steering, braking and accelerating), environmental conditions
(e.g. car’s location or distance from other automobiles), and
driver’s physiological signals (e.g. EEG, ECG and EOG) [2]
[3]. Combination of these information can be beneficial to
improve driving experience.

Brain-computer interfaces (BCI) decode brain signals to
monitor people’s cognitive states or predict actions. Alterna-
tively, BCI systems can be used to estimate driver’s action
intention or cognitive states, and provide this information to a
driving assistant system in order to increase safety or reduce
driving complexity. For example, BCI could be used to detect
whether the driver is paying attention on driving, or predict
his/her intended action in specific situations (e.g. in front of
an intersection, facing traffic lights and lane changing). The
present study aims to use error related brain activity before
reaching interaction to infer the driver’s intended turning
direction.

Error processing is a basic function of the human brain,
which plays a key role in integrating different cognitive pro-
cesses and adjusting performance [4]. Multiple studies have
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reported event related potentials (ERP) when people execute
error responses, which distributes in frontocentral and begins
in adolescence and increases in early adulthood [5], reflect-
ing coordinated theta band activities [6] [7]. Neuroimaging
studies localized this activity in medial frontal cortex (MFC),
particularly anterior cingulate cortex [5]. The amplitude of
the ERP is related to the probability of the unexpected event,
where the lower expectation of error event generates stronger
amplitude [8] [9]. Error related brain activity has also been
verified when people observe error events, which is about
200 to 300 ms after occurrence of unexpected events, and
might have similar neural mechanisms as response error [10]
[11]. BCI researchers have used single trial error related brain
activity to improve the interaction quality between human
brain and external devices [9] [12] [13].

In this work, we apply single trial error detection in driving
task, for the purpose of improving estimation of driver’s
turning direction. We record EEG signals while subjects
are driving a car simulator. Before reaching road inter-
sections, a driving assistant system presented a directional
cue indicating a possible direction to turn. We analyze the
elicited signals both in the temporal and spectral domain in
order to find possible difference between error and correct
conditions. Furthermore, we assess single trial classification
of error/correct related potentials, in order to testing the
feasibility of exploiting these signals in a driving scenario.

II. METHODS
A. Experimental protocols

Seven subjects (six male, with age 27.1 ± 3.2) participated
in the experiment. All subjects had normal or corrected-to-
normal vision. No known neurological or psychiatric diseases
were reported among them. Six subjects had driving licenses
and four of them were active drivers. As shown in Figure
1.A, the subject sat in a car simulator in front of a projector
screen, with size 1.6 m (width) × 1.25 m (height). The car
simulator included steering, braking pedal and accelerating
pedal to change direction, stop and speed up during driving.
The distance between the subject and the screen was 1.8 m.
We designed a virtual environment of a small town with
frequent intersections for the experiment. There was no other
automobile in the environment. During the experiment, the
subject was requested to fixate eyes on the center of the
screen, and drive the car following street boards located on
top of intersections, as shown in Figure 1.B. Once the car was
about 80 m from an intersection, a warning cue composed
of three gray arrows (pointing left, up and right) appeared
at the lower part of the wind shield. One second later, one



Fig. 1. Experimental protocol. A. Subject sat in car simulator and drove
in virtual reality environment with EEG recording. B. Screenshot of driving
environment. When the car was in front of an intersection, a directional cue
appeared to evoke correct/error related potential. It was a correct trial in this
case. White board indicated the real driving direction. C. Timeline of visual
warning and directional cue. Visual warning (three gray arrows) appeared to
indicate a new trial 80 m before the intersection. Directional cue appeared
(green arrow) 1 s later to guess driver’s turning direction. After 0.5 s of
directional cue, all visual arrows disappeared.

of the arrows was highlighted in green, indicating one of the
possible driving direction (directional cue). All visual cues
disappeared 500 ms after directional cue, as shown in Figure
1.C. The probability of the green arrow to be the same as the
street board was 70% to simulate the estimation of directional
intention. We limited the driving speed to 60 km/h in the
driving program. Each session consisted of 30 trials (i.e.
intersections) and lasted about 9-12 min, depending on the
driving speed. Each subject performed 5 sessions, yielding
150 trials in total. Further study would combine the error
detection system with other direction estimation approaches,
which could be based on environment, driving habits or EEG
signals. Here, we assume those systems could perform at an
estimation accuracy of 70%.

B. Signal Acquisition

EEG signals were recorded from 64 channels during driv-
ing, according to the extended 10/20 system using a Biosemi
Active Two system. The sampling rate of the EEG recording
was 2048 Hz. We downsampled the signal to 256 Hz for
further analysis. Driving parameters (angle of brake pedal,
accelerate pedal and steer) were recorded with a sampling
rate of 256 Hz and synchronized with EEG data by parallel
port trigger for each trial.

C. Signal Preprocessing and Statistical Analysis

We did an offline analysis in this study. Multi-channel
EEG signals were filtered using 4th order Butterworth filter
between 1 and 10 Hz [9]. We used common average refer-
ence (CAR) to remove background brain activity across all
recorded channels. 41 channels were considered for further

analysis, since peripheral channels were removed to avoid
any movement artifacts. We extracted correct and error
trials according to the onset of directional cue, which was
considered as the origin (t = 0 s) of the trials. Single trials
within 2.2 s were extracted from the preprocessed EEG data,
which were between -1.2 s and 1 s. After extracting trials
from all subjects, we tested the significance of difference
between correct and error conditions by two-sample t-test
with significance level 5%. The test was performed across
time to find out the temporal dynamics of the significance
of ERP. Statistical test of two-sample t-test was also applied
at the subject level. We did this test in temporal domain,
checking whether there was significant difference between
correct and error at a specific time point, so we did not do
correction of the test.

Power spectral density (PSD) of selected EEG electrode
was computed across time by a sliding window, in order to
inspect the dynamics of frequency components. The size of
the sliding window was 400 ms, and the overlapping of the
sliding window was 95% to obtain smooth results. We used
Yule-Walker equation to solve the auto-regressive coeffi-
cients within a sliding window to obtain PSD. Statistical test
(paired Wilcoxon signed rank test with significance level 5%)
was computed in time-frequency domain for all the pixels (as
shown in 2.C) to specify the location (time and frequency)
of significant difference between two conditions across all
subjects. Non-parametric method (Wilcoxon signed rank test)
was applied, since there was only 7 samples (subjects) in
each group.

D. Classification

Classification between correct and error was performed
based on the ERP waveforms. ERPs between 0.2 s to 0.7 s
from 41 EEG electrodes (exclude peripheral electrodes) were
chosen for classification. We specified the time range from
0.2 s to 0.7 s, since almost all discriminant information be-
tween correct and error was located in this range (see results
of statistical tests). The 50 most discriminant features were
selected for classification using canonical variate analysis,
which is a supervised filter method for feature selection [14].

Linear discriminant analysis (LDA) was applied to classify
correct and error trials for each subject. We used 10-fold
cross validation to evaluate classification performance. Since
the trial numbers for the two classes were not balanced,
i.e. only 30% of them were error trials, we would show
the results in receiver operating characteristic (ROC) space,
quantified by area under curve (AUC).

III. RESULTS

A. ERP and Spectral Analysis

Grand average of ERP across all seven subjects are shown
in Figure 2.A. EEG trials are segmented from 1.2 s before
to 1 s after the directional cue, including the visual warning
at -1 s. From the figure, we can observe that both correct
and error trials exhibit a strong evoked potential around
250 ms after presenting the first visual warning (three gray
arrows). As expected, the waveforms of correct and error



Fig. 2. A. Grand average of ERP for both correct and error conditions at
electrodes FCz and Cz. EEG signals are filtered between 1 to 10 Hz. Gray
curves represent correct condition, dark curves represent error condition,
and green thick curves indicate significant difference (p < 0.05) between
two conditions (two-sample t-test). B. Spatial topoplots for two conditions
at time points -0.76 s, 0 s and 0.24 s. C. Difference of power spectral density
between error and correct at electrode FCz (error − correct). Asterisks
indicate p < 0.05 by paired Wilcoxon signed rank across subjects.

conditions are very similar, and no significant difference cn
be found (p > 0.05, two sample t-test). After the directional
cue (i.e. onset of the green arrow), there is a positive peak
around 250 ms followed by a negative peak for both correct
and error conditions. The positive peak is higher in correct
condition. About 500 ms after the directional cue, there is a
second positive inflection peaking around 700 ms. Significant
differences (p < 0.05, two sample t-test) are found between
200 ms and 600 ms in medial central electrodes electrodes,
e.g. FCz and Cz in Figure 2.A, which are denoted by
the thick green line. Statistical significances (p < 0.05, two
sample t-test) can also be found from six out of all seven
subjects. This figure illustrates two channels as examples
here. Significant differences are also found in other brain
sites.

The topographic representation of the brain activity for
both correct and error conditions are shown in Figure 2.B.
Selected time points (-0.74 s and 0.24 s) correspond to the
positive peaks of the ERPs after both warning and directional
cue. We show them here to compare the responses between
warning and directional cues. Both conditions present high
activity in prefrontal regions and decreased activity in pari-
etal and occipital sites after visual warning (t = -0.76 s).

Medial frontal activity is strengthened and posterior lateral
parietal is depressed after the directional cue (t = 0.24 s)
for both conditions. The error condition presents lower
amplitude than the correct condition. The spatial distribution
of brain activity after the directional cue is located more
caudal than that after the warning cue, particularly in the
error condition.

The difference of PSD between the two conditions
(error − correct) at electrode FCz is illustrated in Figure
2.C. Higher delta and theta power could be found in the error
condition starting from 250 ms after directional cue, which
is statistical significant across subjects (p < 0.05, paired
Wilcoxon signed rank test). In addition, depression of the
beta power in the error condition can be seen about 0.4 s
after the directional cue, which is also significant (p < 0.05,
paired Wilcoxon signed rank test). Modulation of theta and
beta bands are consistent with previous studies of error
related brain activity [15] [16].

B. Classification

Results of classification (ROC curves) are shown in Figure
3. In the figure, x axis indicates the false positive rate (i.e.
misclassified error trials), whereas y axis denotes the true
positive rate (i.e. properly classified correct trials). Perfect
classification corresponds to an AUC equal to 1, and 0.5
means completely random performance. Using the 50 most
informative features from 41 channels between 0.2 s and
0.7 s, the average AUC across all subjects is 0.690 (LDA
classifier with 10-fold cross validation). All subjects exhibit
results above 0.5, where the lowest AUC is 0.531. Large
variability can be observed across subjects: Two subjects
exhibit high performance (AUC = 0.925 and 0.845), while
three of them have low performance, with AUC equal to
0.531, 0.543 and 0.571. Four out of seven subjects (4/7)
have significantly higher AUC than random. In general, the
classification accuracy for error trials is relatively lower than
correct trials (averaged accuracy equal to 0.591 and 0.727
for error and correct trials, respectively). It should be noticed
that given the experimental protocol there are more correct
trials (around 70%).

IV. DISCUSSIONS AND CONCLUSIONS

Single trial detection of error related brain activity is
usually combined with other systems to improve the perfor-
mance of brain state recognition. Previous studies adopted
error detection in a BCI system to improve its performance
[13]. Our study suggests that it is feasible to improve the
estimation of driver’s turning direction by detecting error
related brain activity. In the future, this information can be
combined with other systems as an improvement of in-car
action detection. In the current study, most subjects obtain
classification accuracies higher than random, indicating that
the single trial detection can help to improve the brain state
recognition during driving.

Error related activity is observed in this study around
250 ms after the stimulus, which is consistent with previous



Fig. 3. Classification results (ROC curves) between error and correct
trials for all seven subjects. Each line represents one subject. Random level
corresponds to the diagonal.

findings [10] [11]. Our results also indicate that error condi-
tion elicits higher activity in theta rhythm and lower activity
in beta rhythm, which reflects that oscillatory powers are
modulated during brain error processing [15] [16].

In this study, we chose the ERP from 0.2-0.7 s as the input
of classification because they are related to the differences
between error and correct condition, as demonstrated in
Figure2.A. Although the obtained accuracy is above random
for most subjects, it may still be low for practical appli-
cations. The variability of the classification performances
across subjects may be caused by the varying driving experi-
ence. Subjects who had participated in the experiment before
could generate higher accuracy. We compared current results
with previous study of error recognition with a moving
cursor protocol, whose classification accuracies were 75.81%
and 63.21% for correct and error trials when the error rate
was 0.2, and the accuracies were 64.42% and 59.36% for
correct and error when the error rate was 0.4 [9]. This
study obtain accuracies 72.7% and 59.1% with error rate 0.3,
indicating that error recognition in driving task is feasible and
comparable with simple error monitoring task.

To further our study, we will explore other features for
the classification. Spectral information might be helpful for
us to improve the discrimination performance, since we
have found statistical significance between two conditions.
Moreover, causal influences between EEG electrodes, which
can be obtained by multivariate auto-regressive models, can
also be used as features for the discrimination, which seems
to provide extra information for the classification task [17].

So far we used visual cues to evoke error related potential,
which may increase the visual burden during driving. We will
study other feedback modalities, such as auditory or tactile,
which have been reported as stimuli to evoke brain error
processing [12] [18]. Additionally, feature extraction and
classification in the present study are applied offline. Future
work will also address online implementation of error/correct
classification in driving task, as well as real car experiments.

V. ACKNOWLEDGEMENTS

We would like to thank all subjects that have participated
in the experiments.

REFERENCES

[1] T. A. Ranney, “Driver distraction: A review of the current state-of-
knowledge,” in US Department of Transportation National Highway
Traffic Safety Administration, 2008.

[2] C. H. Chuang, P. C. Lai, L. W. Ko, B. C. Kuo, and C.-T. Lin, “Driver’s
cognitive state classification toward brain computer interface via using
a generalized and supervised technology,” in The 2010 International
Joint Conference on Neural Networks, Jul. 2010, pp. 1–7.

[3] S. Haufe, M. S. Treder, M. F. Gugler, M. Sagebaum, G. Curio, and
B. Blankertz, “EEG potentials predict upcoming emergency brakings
during simulated driving,” Journal of Neural Engineering, vol. 8, no. 5,
pp. 1–11, Oct. 2011.

[4] C. B. Holroyd and M. G. Coles, “The neural basis of human error
processing: reinforcement learning, dopamine, and the error-related
negativity,” Psychology Review, vol. 109, no. 4, pp. 679–709, 2002.

[5] S. F. Taylor, E. R. Stern, and W. J. Gehring, “Neural systems
for error monitoring: Recent findings and theoretical perspectives.”
Neuroscientist, vol. 13, no. 2, pp. 160–172, Apr. 2007.

[6] P. Luu, T. Flaisch, and D. M. Tucker, “Medial frontal cortex in action
monitoring.” The Journal of Neuroscience, vol. 20, no. 1, pp. 464–469,
Jan. 2000.

[7] L. T. Trujillo and J. J. B. Allen, “Theta EEG dynamics of the error-
related negativity.” Clinical Neurophysiology, vol. 118, no. 3, pp. 645–
668, Mar. 2007.

[8] M. Falkenstein, J. Hoormann, S. Christ, and J. Hohnsbein, “ERP
components on reaction errors and their functional significance: a
tutorial.” Biological Psychology, vol. 51, no. 2-3, pp. 87–107, 2000.

[9] R. Chavarriaga and J. d. R. Millán, “Learning from EEG error-related
potentials in noninvasive brain-computer interfaces,” Transactions on
Neural Systems and Rehabilitation Engineering, vol. 18, no. 4, pp.
381–388, 2010.

[10] W. H. R. Milner, J. Brauer, H. Hecht, R. Trippe, and M. G. H. Coles,
“Parallel brain activity for self-generated and observed errors.” Errors,
Conflicts, and the Brain. Current Opinions on Performance Monitoring
(eds. Ullsperger, M. & Falkenstein, M.), pp. 124–129, 2004.

[11] H. T. van Schie, R. B. Mars, M. G. H. Coles, and H. Bekkering,
“Modulation of activity in medial frontal and motor cortices during
error observation.” Nature Neuroscience, vol. 7, no. 5, pp. 549–554,
May 2004.

[12] X. Perrin, R. Chavarriaga, C. Ray, R. Siegwart, and J. d. R. Millán,
“A comparative psychophysical and EEG study of different feed-
back modalities for human-robot interaction,” in ACM/IEEE Conf on
Human-Robot Interaction HRI08, Amsterdam, Netherlands, 2008.

[13] P. W. Ferrez and J. d. R. Millán, “Error-related EEG potentials gener-
ated during simulated brain-computer interaction,” IEEE Transactions
on Biomedical Engineering, vol. 55, no. 3, pp. 923–929, 2008.

[14] F. Galán, P. W. Ferrez, F. Oliva, J. Guàrdia, and J. d. R. Millán, “Fea-
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