Abstract:
A comparative analysis of four multi-label classification methods is performed in order to determine the best topology for the problem of protein function prediction, usi...Show MoreMetadata
Abstract:
A comparative analysis of four multi-label classification methods is performed in order to determine the best topology for the problem of protein function prediction, using support vector machines as base classifiers. Comparisons are done in terms of performance and computational cost of parallelized versions of the algorithms, for determining its applicability in high-throughput scenarios. Results show that the performance of the binary relevance strategy, together with a technique of class balance, remains above several recently proposed techniques for the problem at hand, while employing the smallest computational cost when parallelized. However, stacked classifiers and chain classifications can be conveniently used in pipelines, due to the low number of false positives reported.
Published in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 03-07 July 2013
Date Added to IEEE Xplore: 26 September 2013
Electronic ISBN:978-1-4577-0216-7
ISSN Information:
PubMed ID: 24110281