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Abstract— Motor-disabled end users have successfully driven
a telepresence robot in a complex environment using a Brain-
Computer Interface (BCI). However, to facilitate the interaction
aspect that underpins the notion of telepresence, users must be
able to voluntarily and reliably stop the robot at any moment,
not just drive from point to point. In this work, we propose
to exploit the user’s residual muscular activity to provide a
fast and reliable control channel, which can start/stop the
telepresence robot at any moment. Our preliminary results
show that not only does this hybrid approach increase the
accuracy, but it also helps to reduce the workload and was
the preferred control paradigm of all the participants.

I. INTRODUCTION

One of the core areas targeted by brain—computer inter-
faces (BCIs) is neuroprosthetics. This means being able to
control robotic and prosthetic devices in order to perform
activities of daily living, using brain signals alone. The
eventual aim is to empower people with severe motor-
disabilities to (re—)gain a degree of independence. One of the
most significant challenges currently faced is that in addition
to high accuracy in the decoding of mental commands,
fast decision—making and split attention are critical [1], [2],
[3]. There have been several demonstrations of such brain-
controlled devices, ranging from robotic arms [4], [5], to
hand orthoses [6], [7]; and from telepresence robots [1], [8],
to wheelchairs [9], [10], [11]. These works predominantly
take spontaneous approaches, where the subjects learn to
voluntarily modulate their sensorimotor brain activity. Such a
paradigm has proven to be an intuitive and natural manner in
which to control neuroprosthetic devices and, after training,
motor—disabled end-users have been able to attain levels of
performance that are comparable to healthy subjects [8].

Electroencephalogram (EEG), being non-invasive, is a
convenient, safe, and inexpensive method that promises
to bring BCI technology to people with severe motor—
impairments. However, the inherent properties of EEG sig-
nals cause EEG—based BClISs to be limited by low information
transfer rates. Nevertheless, complex robotic devices have
been successfully and reliably controlled by such BCIs, by
exploiting smart interaction designs, such as shared control
[12], [13], [14], [15]. Millan’s group has pioneered the use of
shared control in neuroprosthetics, by taking the continuous
estimation of the user’s intentions and providing appropriate
assistance to execute tasks safely and reliably [1], [2], [16].
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Fig. 1: Our telepresence platform is based upon Robotino by
FESTO, which we have equipped with an additional wide-
angle webcam and a laptop to facilitate remote interactions.

Furthermore, thanks to the mutual learning approach, where
the user and the BCI are coupled together and adapt to each
other, end—users are able to learn to operate brain—actuated
devices relatively quickly (typically in a matter of hours
spread across few days [8], [3], [17], [18]).

Previously, we have shown how a two—class motor
imagery—based BCI can enable motor—disabled end users
to successfully drive a telepresence robot in a complex
environment [8], [17]. To date, these users have relied upon
an assistant to start and stop the BCI feedback that allows
them to drive the robot. Furthermore, they were only able to
stop the robot when the shared control system determined
that they wished to dock to a particular target. Then, to
remain stationary, they had to actively not deliver any BCI
commands (intentional non—control), which has proven to
be demanding (high workload). However, it is an important
element of any telepresence system to be able to reliably
start and stop the robot at any point [19]. As a solution,
we propose to exploit the hybrid BCI (hBCI) principle [20],
whereby a complementary EMG channel is added to the
EEG-based BCI [21] to enable the user to start/stop the
robot and (un—)pause the delivery of BCI commands at any
moment.

We will briefly describe our telepresence robot platform,
explain our motor imagery—based BCI and the additional
complementary EMG system. Then we will give the details
of our experiment protocol, which investigates the efficacy of
the hybrid approach. Finally we will discuss our conclusions
that the hybrid approach not only brings benefits in terms
of increasing precision, but it also reduces the workload. We
will finish by considering the implications of transferring



such a hybrid approach to severely motor—disabled end users
and applying it to other assistive technologies.

II. METHODS
A. The Telepresence Platform

Our telepresence robot is driven using a two—class asyn-
chronous sensory—motor rhythm-based BCI. The robotic
platform (see Fig. 1) consists of a commercial circular mobile
robot base, Robotino by FESTO, which is equipped with
nine proximity sensors. We have added a webcam and a
laptop to enhance the environmental perception capabilities
and provide the telepresence functionalities [8]. The user can
control the motion of the robot by voluntarily delivering one
of the two classes (turn left or turn right), or decide not
to issue a turning command at all, which yields an implicit
third class known as intentional non—control. In this third
case, the robot continues with its default behaviour, which is
to move forward and avoid obstacles where necessary. This
is achieved by a system known as shared control, which takes
the environmental context into account when interpreting
the user’s commands. It decides exactly when and how far
to turn, and whether to avoid or dock to the obstacles it
encounters along the way [8], [16].

B. The Brain—Computer Interface

Since the user will perform motor imagery tasks to drive
the robot, we acquire monopolar EEG at a rate of 512Hz
(bandpass filtered between 0.5-100 Hz), from 16 electrodes
placed over the motor cortex, which are spaced according
to the international 10/20 system. We apply a Laplacian
spatial filter and then estimate the power spectral density
(PSD) over the last second, in the band 4-48 Hz with a
2Hz resolution [1]. We compute the PSD features every
62.5 ms using the Welch method with 5 overlapped (25%)
Hanning windows of 500ms. We use canonical variate
analysis (CVA) [22] to select the subject—specific features
that best reflect the motor—imagery task for each subject
and use these to train a Guassian classifier [18]. Evidence
about the executed task is accumulated using an exponential
smoothing probability integration framework [23]. This helps
to prevent commands from being delivered accidentally and
enables the user to deliberately not deliver a command in the
process previously described as intentional non—control.

C. The EMG Interface

In this pilot study, we measure the bipolar EMG of the
extensor carpi radialus longus in healthy subjects. This was
chosen due to the ease of electrode placement: the muscle is
easily identified when extending the wrist (lifting the hand),
c.f. Fig. 2. The EMG is acquired in parallel with the EEG,
but this time, we bandpass filter the signal between 30—
40Hz. Due to the comparably high signal-to-noise ratio
(SNR), we were able to detect the EMG commands by
simply applying a subject—specific threshold to the envelope
of the signal. The threshold is determined as the midpoint
between mean active and mean rest values from the offline
training dataset [21]. When transferring the technology to
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Fig. 2: The hybrid experiment setup. The user performs
motor imagination tasks to drive the telepresence robot and
extends the wrist to start/stop the robot.
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Fig. 3: A comparison between the two control paradigms.
On the left is the original BCI protocol (INC condition) and
the new hBCI protocol is on the right (hybrid condition).

motor-disabled end users, we will involve clinician in the
EMG electrode placement, such that we target the most
appropriate residual voluntary muscular control available, as
we have already successfully done in our previous studies
with a text—entry system [21]. It is important to note that the
EMG interface is used infrequently compared with the EEG
interface. This is because motor—disabled end—users often
find it fatiguing to voluntarily produce sustained EMG activ-
ity from their residual muscular capabilities (e.g. continuous
control for sustained periods), yet are able to reliably produce
short bursts of EMG activity.

D. The Control Paradigms

In the original paradigm, subjects use the BCI to continu-
ously control the robot, which will only stop when its shared
control system detects an “obstacle” that is immediately in
front of it, such that it is ambiguous as to which direction it
should turn to avoid the object. To remain stationary in such
a case, users must (intentionally) not deliver any commands,
until they are ready to move on (see Fig. 3). This can be
extremely demanding, both in terms of manoeuvring the
robot precisely to the target location and then deliberately
not delivering any more commands, especially if the user
wishes to simultaneously interact with someone (telepres-
ence) whilst the robot is stationary.



Fig. 4: One of the trajectories (A—B) that the participants
had to drive is shown. They also had to drive B—A, A—C
and C—A. On each trajectory they were instructed to pause
just before entering the dotted square region (i.e. before
making the turn) and again when they reached the target.

Conversely, in the new hBCI paradigm (see Fig. 3), an
additional EMG channel acts as an asynchronous toggle
switch, which can start or stop the robot’s motion and
simultaneously (un—)pause the delivery of BCI commands.
In this case, subjects continuously control the motion of the
robot using the BCI, until they deliver an EMG command. At
which point, the robot stops and the BCI feedback becomes
greyed out. The user continues to receive feedback about the
status of the BCI, but any commands that are delivered are
not sent to the robot. The only way to reactivate the robot
and continue driving using the BCI is to send the same EMG
command once more. The robot will then begin moving again
and the BCI feedback bars will simultaneously become re-
illuminated in colour, indicating to the user that the robot will
now respond to any BCI commands that they might deliver.

E. The Experiment Protocol

We perform a feasibility study with four healthy males
aged 28+6 years. They were experienced users of the origi-
nal BCI telepresence platform, but were naive to the goals of
this experiment. All were all able to reach a BCI accuracy
of greater than 90% in an online cued protocol, prior to
undertaking the experiment with the robot. The task involved
driving the robot along eight trajectories, each ~7 m in length
(Fig. 4). The subject was audibly cued by the experimenter to
pause and resume driving twice at predefined locations along
each path. We compare the original BCI control paradigm
(condition INC)—where the shared controller stops the robot
and any BCI command resumes the motion—with the new
hBCI paradigm (condition Hybrid), for both short (10s) and
long (30s) pauses. The turn directions and pauses were
interleaved and counterbalanced within subjects, whereas
the control paradigms were block-counterbalanced between
subjects.

III. EXPERIMENTAL RESULTS

Although we do not yet have enough participants to give
any statistically significant results, this pilot study does sug-
gest some noteworthy trends. As can be seen in Fig. 5, it was

much more difficult for participants to make the robot remain
stationary for a precise period of time using intentional
non-control, compared with using the hybrid BCI. This is
especially the case for long trials (Fig. 5b), where participants
were instructed to stop for a period of 30 seconds, but on
average could only remain stationary for around 20 seconds,
before they accidentally delivered a command. Furthermore,
the variance of the INC trials is greater than that of the hybrid
trials, which again highlights the difficulty of precise timing
for BCI command delivery [17]. In the hybrid condition,
for one of the long pause trials, subject s2 relaxed and
accidentally flexed his arm, which resulted in a false positive
in the EMG, thus contributing to the larger negative mean
error. It is easy, though, to recover from such an error,
since the user need only deliver another EMG command
immediately afterwards to stop the robot again.

Importantly, the subjects report a reduction in the per-
ceived task workload, when using the hybrid approach, as
can be seen in Fig. 5c. The only task load index (NASA
TLX) [24] indicator that showed a tendency to increase, was
that of physical demand, which is to be expected, since in
the INC paradigm, no physical movements were required.
Moreover, all four subjects reported that they preferred to
use the hybrid version for stopping, rather than relying upon
the shared control to identify a potential location in which to
stop the robot and then actively not deliver any commands,
in order to remain stationary. This was for two reasons: first,
it gave the user more authority over the robot and second it
required less effort.

IV. CONCLUSIONS

This pilot study suggests that not only does the hybrid
approach provide a reliable and precise stopping mechanism,
but that users are able to successfully complete the task with
a lower perceived workload. These results may be transferred
to representative end-users, who are able to produce reliable
EMG activity (fatigue should be negligible given the sporadic
nature of stop commands). The new hybrid control paradigm
empowers users to start and stop the BCI controlled robot,
without having to rely upon an assistant. This, combined with
the lower overall workload, is likely to enable BCI users to
work independently for prolonged periods of time.

In the near future, the same technique could be applied to
other related devices, such as brain—controlled wheelchairs.
Although studies have shown that users were able to suc-
cessfully complete realistic driving tasks without the hybrid
approach [9], [17], the extra control channel increases the
user’s level of authority and independence, without compro-
mising on safety or impacting heavily on the task load.
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Fig. 5: The error in the duration of the (a) short and (b) long pauses for both control paradigms, for each subject (s1-s4).
Positive values indicate that they remained stationary too long, whereas negative values mean that they moved on too soon.
(c¢) The NASA TLX [24] indicates that task load is decreased overall when using the hybrid approach, compared with the
original BCI paradigm, which relied heavily on intentional non-control (note: low scores are desirable for every factor, i.e.
performance = 0, implies perfect performance).
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