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Abstract
In this article we investigate the suitability of a manifold learning technique to classify different
types of emphysema based on embedded Probabilistic PCA (PPCA). Our approach finds the most
discriminant linear space for each emphysema pattern against the remaining patterns where lung
CT image patches can be embedded. In this embedded space, we train a PPCA model for each
pattern. The main novelty of our technique is that it is possible to compute the class membership
posterior probability for each emphysema pattern rather than a hard assignment as it is typically
done by other approaches. We tested our algorithm with six emphysema patterns using a data set
of 1337 CT training patches. Using a 10-fold cross validation experiment, an average recall rate of
69% is achieved when the posterior probability is greater than 75%. A quantitative comparison
with a texture-based approach based on Local Binary Patterns and with an approach based on local
intensity distributions shows that our method is competitive. The analysis of full lungs using our
approach shows a good visual agreement with the underlying emphysema types and a smooth
spatial relation.

I. Introduction
Chronic Obstructive Pulmonary Disease (COPD) is an irreversible lung condition that
involves different diseases of the airways and parenchyma[1]. This group of diseases are
expected to be one of the major causes of morbidity and the third cause of mortality by
2020. Emphysema is one of the main pathophysiological manifestations of COPD, which
can be defined as the destruction of the pulmonary alveoli walls implying an enlargement of
the air spaces in the lung parenchyma [2]. Morphologically, most authors distinguish
between three types of emphysema, centrilobular emphysema that affects the respiratory
bronchioles, panlobular emphysema that implies the destruction of the whole acinus and
paraseptal emphysema that is morphologically similar to the other two types but occurs by
definition near the pleura. In this article we consider six patterns of interest: normal tissue
(NT), paraseptal emphysema (PS), panlobular emphysema (PL) and three subtypes of
centrilobular emphysema: mild, moderate and severe (CL1/CL2/CL3).

Computed Tomography has been used by clinicians to assess emphysema as CT findings
show a high correlation with the real extent of the disease [2]. However, visual scoring and
interpretation of the images are subjective and time consuming so different approaches for
automatic emphysema quantification have been proposed. The primary technique used for
the detection and objective quantification of emphysema is based on lung density or
densitometry [3] while more recently developed approaches are based upon textural
analysis. These methods combine features extracted from co-occurrence matrices [4], local
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binary patterns (LBP) [5] or multi-resolution features obtained from filter banks [6], [7]. A
simpler alternative based on kernel density estimation (KDE) [8] has been proposed
recently. A different approach to this effort may be based on manifold learning. The data of
interest lies on an embedded nonlinear manifold within the higher-dimensional image space.
For example, this approach has been used successfully to recognize faces [9].

In this article we propose a novel approach to classify different patterns of emphysema
based on a probabilistic interpretation of the manifold in which each pattern is embedded.
Our main goal is not to propose a hard classifier; emphysema assessment is a complex task
that involves a large inter-subject variability. Rather, we propose a method that computes the
class membership posterior probabilities for each emphysema patterns. This probabilistic
framework may provide both clinicians and emphysema quantification approaches with
additional information to handle the uncertainty associated to this problem. To achieve this,
we implement Probabilistic Principal Component Analysis (PPCA) [10] preceded by
generalized Linear Discriminant Analysis (LDA) [11], a step designed to find the most
discriminative lower dimensional space in which to apply PPCA. Probabilistic manifold
approaches have been also proposed for the problem of face recognition elsewhere [12],
however our approach is unique in the use of a supervised embedding step based on LDA
and a formal probabilistic extension of PCA. To evaluate the performance of our approach
we use 10 fold cross-validation schemes in a data set of 1337 emphysema samples obtained
from 267 COPD subjects. Also a comparison with LBP [5] and with KDE [8] is carried out.

II. Methods
In this section, we will present our method (see Fig. 1). First, we perform an initial
dimensionality reduction using a global PCA. Next, we find an embedding space for each
emphysema pattern versus the rest where the discriminative information under projection is
maximal using a generalized LDA [11]. Finally, we compute a PPCA model in the
embedded space to obtain a class membership probability for the input image sample. PPCA
is a linear manifold learning technique derived from a density estimation perspective.

A. Global linear embedding: PCA-step
Before applying LDA, a dimensionality reduction step is performed by means of PCA. Let

, k ∈ [1…Nc] be a set of observed d-dimensional data vectors where Nc
is the number of classes (patterns) and Nk is the number of samples per class. In our case, the
feature vectors are 31×31 pixel image patches arranged as a column vector. Using all the
training samples, PCA computes a projection matrix QPCA that reduces the dimension from
d to dPCA with dPCA < d such as Zk = QPCAXk. The basis of QPCA can be interpreted as a set
of linear operators.

B. Supervised embedding: LDA-step
The aim of this step is to find the embedded space that best discriminates the k pattern from
the others. Fisher Linear Discriminant Analysis performs a dimensionality reduction
preserving as much class discriminatory information as possible. This technique fits very
well to our problem for two reasons. First, it is a supervised method, so we can take
advantage of our data labeling. Second, the resulting projections have a compact,
monomodal distribution that can be efficiently captured by PPCA (as can be seen in the
example given in Fig. 2). Instead of using the traditional algorithm, which only finds one
discriminant vector, we use the generalization proposed by Duchene and Leclercq that
permits to find n discriminant vectors [11]. For each emphysema pattern, k, a LDA model is
defined using two classes, C1 = Zk and C2 = {Z1 …Zk−1Zk+1…ZNk} such that the ratio
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(1)

is maximized, where  is the between-class covariance matrix,  is the within-class
covariance matrix for the classes C1 and C2.

The method proposed in [11] maximizes Jk by computing a linear subspace

 that can be used to project each image vector onto the most
discriminant embedded space for pattern k of dimensionality dLDA.

C. Probabilistic Emphysema Classification: PPCA-step
PPCA derives PCA in the maximum likelihood framework allowing to calculate posterior
class-membership probabilities in a formal way. The approach is described in detail in [10].

Using a Gaussian latent variable model, it is possible to compute the likelihood of an input
vector y for a given emphysema pattern k.

(2)

where  is the mean of the data for pattern k and x̄ is the
global mean of the data.

(3)

is the model covariance for pattern k where  is the noise
variance and λj are the smallest eigenvalues of the sample covariance for each class

(4)

 is the weight matrix for each pattern, where the dPPCA

column vectors of the dLDA×dPPCA matrix  are eigenvectors of Sk, with

corresponding eigenvalues in the dPPCA ×dPPCA diagonal matrix  and R is an
arbitrary dPPCA × dPPCA orthogonal rotation matrix.

The posterior probability for the emphysema pattern k given the data y is defined by means
of the Bayes’ rule as

(5)

where  are the priors and NT is the total number of samples in the training set.
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Figure 2 shows an example of how the method works when the data is embedded in a two-
dimensional space using our training set. 20% of the samples for each class were segregated
and projected with the models computed from the rest of the available samples. LDA is
successful at defining an embedded subspace that separates a given pattern k from the rest.
Then, PPCA estimates a likelihood density function (represented with isolines) that can be
used to evaluate new data (represented as squares). The separability achieved by LDA is
dependent on the initial dimensionality reduction performed by PCA (higher dPCA implies
better separability), however the generalization of the LDA model to new examples is
affected by high dPCA values.

III. Results
Emphysema Database

In our experiments we utilized 1337 training samples that were labelled by an expert. The
distribution of samples per pattern was: NT=370, PS=184, PL=148, CL1=287, CL2=178,
CL3=178. The samples were selected from a group of 267 subjects scanned across 16
different institutions as part of the COPDGene study. On average, the expert labeled six
samples per patient at random based on prototypic expression of disease and without any
prior spatial correlation. As such we can consider that the samples are independent
representations of disease regardless of the patient that were selected from. The expert
performed a second review to evaluate the consistency of the assignments and samples that
were non-consistently labeled were discarded. The spatial size of the samples was chosen to
fit the physical extent of emphysema within the secondary lobule corresponding to 31 × 31
pixels patches (d = 961). Prior to the application of our method, each image pixel was
normalized by means of the z-score using the global mean and standard deviation of all the
training pixel values.

Parameter selection
Our approach involves three dimensionality reduction steps, PCA, LDA and PPCA, and the
embedding dimensionality in each stage of the method is a free parameter. We set dPCA,
dLDA and dPPCA to optimize the classification accuracy defined as the distance to the perfect
classifier on the training set using a nested 10-fold cross validation [13] with a grid search
(dPCA ∈ [20, 100], dLDA ∈ [10, 20] and dPPCA ∈ [2, 10]). In a nested cross-validation, the
training set for each fold is used in a new cross validation experiment to set the optimal
parameters for that fold. This reduces the bias due to parameter optimization. When using
the full training set, the optimal parameters were: dPCA = 22, dLDA = 17 and dPPCA = 8.
These values are included as a reference for the optimality range.

Classification performance
To assess the classification performance of our approach, we used a nested 10-fold cross
validation as described before and we carried out a comparison with the LBP method [5] and
with KDE [8] using the optimal parameters described in their paper. Both methods employ a
kNN classifier that does not provide posterior probability estimates for the classifier
assignments. In our method, we used a Maximum a Posterior (MAP) criteria to compute the
confusion matrix. The assignments were done at different confidence levels (25%,50%,75%
and 90%) given by the upper threshold on the MAP probability, i.e. EPPCA75% uses those
test samples that were assigned a posterior probability greater than 0.75. Precision,
sensitivity and specificity are shown in Table I. We can see how our method is competitive
with LBP and KDE at a confidence level of 25%, i.e when all the samples are used to
compute the confusion matrix. Our method improves its accuracy when a higher confidence
level is used, reflecting the important information that the posterior probability conveys.
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Full lung emphysema classification
For a more exhaustive evaluation of our approach we computed a full lung classification in
subjects with different patterns of disease. For a given CT slice, we applied our approach to
each voxel and computed the class membership probabilities for each emphysema type. Fig.
3 shows the probability maps for each emphysema pattern for three subjects. It is worth
noting how paraseptal is mostly present in late stages diseases while mild centrilobular is
present for the mild stages. Paraseptal is confined to the pleural region as it should be
expected by the histopathology of this disease. The normal smoker lung shows moderate
level (mid probabilities) of mild centrilobular disease (CL1) that might suggest the impact of
smoking in the lung parenchyma even when emphysema has not been fully manifested.

IV. Discussion and Conclusions
In this paper we present a new approach to quantify different emphysema patterns, based on
a optimal embedded PPCA. Our approach to the emphysema classification problem is novel
in that we capture the underlying data manifold for each pattern (or class) in a probabilistic
fashion using a supervised embedding technique based on LDA. The embedded space in
which the probabilistic data model is learnt is computed by means of a generalized LDA that
is trained for each tissue type to maximize the inter-class covariance between that
emphysema type and the rest of types. Our method shows a performance that is comparable
to current techniques.

The need for a initial dimensionality reduction step based on PCA is twofold. First, when the
dimensionality of the data is bigger than the number of samples, the within-class covariance
matrix Jk is likely to be singular. Also, we have noticed that this step is necessary to achieve
a balance between the discriminative power of LDA and the generalization of the model
when projecting new samples. Although in this paper we have used a linear dimensionality
reduction approach, more general non-linear dimensionality reduction methods could also be
explored and applied.

The posterior probability information provided by this method can be used in multiple ways.
Certainties about the most likely labels can be provided to guide the emphysema
quantification stage. Additionally, advanced method based on Markov chain models can be
used to relax the probability assignments taking into account priors about disease
progression between stages and spatial relationships of disease.
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Fig. 1.
Schematic view of our method. For each emphysema pattern a LDA and a PPCA model
capture is trained to capture the likelihood of each pattern.
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Fig. 2.
An example of the LDA feature space for dPCA = 400 and dLDA = 2 for two tissue types. For
both normal tissue (top) and mild centrilobular (bottom) emphysema, the manifold learnt by
LDA properly separates those classes from the other class samples using a training set
corresponding to the 80% of the available samples. The isolines represent the likelihood for
the data given by the PPCA model. Green squares represent the testing data for each class
projected in the model trained for that class (red circles). Blue circles represent the rest of
the data points projected in the LDA-derived embedding space for that model. It is worth
noting how the LDA model is able to project new data into the proper embedded space that
is in turn captured by PPCA.
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Fig. 3.
Class membership Posterior Probability maps for three subjects with different disease
severity: normal smoker (top), moderate disease (middle) and severe disease (bottom). As
disease progresses, the posterior probability increases in the moderate and severe
centrilobular classes (CL1 and CL2) and the panlobular class. It is important to note that the
paraseptal posterior probability only shows signal in the pleural interface as it should be
expected.
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