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Abstract—The class imbalance issue occurs when training a 
computer-aided detection (CAD) system for nodules. This 
imbalance causes poor prediction performance for true nodules. 
Moreover, the misclassification costs are different between two 
classes and high sensitivity of true nodules is essential in the 
detection. In order to eliminate or reduce the false positives 
while keeping high sensitivity, we present an effective wrapper 
framework incorporating the evaluation measure of imbalanced 
data into the objective function of cost sensitive SVM. We 
improve the performance of classification by simultaneously 
optimizing the best pair of misclassification cost parameter, 
feature subset and intrinsic parameters. We evaluated the 
method on a 3D Lung nodule dataset, showing that the proposed 
method outperforms many other exiting common methods, as 
well as specific imbalanced data learning methods, which 
indicates the effectiveness of our method on the imbalanced and 
unequal misclassification cost data classification. 

I. INTRODUCTION 

Lung cancer is one of the main public health issue in 
developed countries [1], and early detection of pulmonary 
nodules is an important clinical indication for early-stage 
lung cancer diagnosis. Computer aided detection (CAD) can 
provide initial nodule detection which may help expert 
radiologists in their decision making. A CAD scheme for 
nodule detection in CT (Computed Tomography) can be 
broadly divided into a nodule identification step and a 
false-positive reduction step. For finding the suspicious 
nodules, the initial detection of the CAD requires high 
sensitivity, and so, it produces a number of false positives. 
Since the radiologists must examine each identified object, it 
is highly desirable to reduce these false positives (FPs) while 
retaining the true positives (TPs). Therefore significant 
efforts are needed in order to further improve the performance  
of current CAD schemes for nodule detection [2]. 

The false-positive reduction (FPR) step is a critical part in 
the Lung nodule detection system [3, 4]. It is a classification 
task. The most significant problems in the FPR is that the two 
classes are skewed and have unequal misclassification costs 
in the training set. Typically the minority class carries a 
higher cost of misclassification, making common 
classification methods inappropriate. This is a typical “class 
imbalance problem” [5]. Class imbalanced data has 
detrimental effects on the performance of conventional 
classifiers [5]. However, in the potential nodule classification, 
the problem has attracted less attention. Only few works 
consider this problem using simple solutions [3, 6-8]. There is 
still room for improvement on the FPR. 
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The results obtained in [7] show that cost-sensitive SVM 
(CS-SVM) trained with imbalanced data sets achieves 
promising results in terms of sensitivity and specificity, by 
means of adjusting the misclassification cost of false 
positives versus false negatives. However, there are some 
challenges with respect to the training of CS-SVM. The 
misclassification costs play a crucial role in the construction 
of the classification model. However, the appropriate 
misclassification costs cannot be apriori set. It is not correct to 
simply set the ratio cost to the reverse of the sizes of two 
classes, as it is often done. Beside the cost, there are two other 
problems confronting SVM: how to choose the optimal 
feature subset for SVM, and how to set the best intrinsic 
parameters including the regularization parameter C and the 
kernel function parameter. The issue of high-dimensionality 
poses additional challenges when dealing with 
class-imbalanced prediction, resulting in influencing the 
performance of the CS-SVM. Thus, it is important to select 
features that lead to a higher separability among the unequal 
classes [9]. In addition, the intrinsic parameters of SVM also 
influence the classification performance. Furthermore, the 
feature subset choice influences the appropriate intrinsic 
parameters as well as the misclassification cost and vice versa. 
Therefore, these factors need to be obtained simultaneously. 
The significance of the scheme has two questions to fix: how 
to optimize these factors simultaneously and what evaluation 
criteria to use for guiding their optimization. These two issues 
are our key step for improving the CS-SVM in the context of 
the suspicious nodule classification.  Our main contributions 
in this paper are centered around the questions above. 

In order to solve the challenges above, we design a novel 
CS-SVM driven by performance measures. Particle swarm 
optimization (PSO) is employed as the optimization strategy 
due to its fast and effective solution space exploration [10]. 
The measure oriented scheme optimizes the factors (cost, 
feature subset and intrinsic parameters) simultaneously. 
Furthermore, we use different performance evaluation 
metrics as objective functions like the G-mean [11], AUC 
(Area Under ROC Curve) [12]. Different metrics can reflect 
different aspect performance of SVM classifier. 

II. MEASURE ORIENTED COST SENSITIVE LEARNING 

A. Cost-Sensitive SVM 

The cost-sensitive version of SVM (CS-SVM) [13] is 
normally a good solution to address the above problem. 
CS-SVM is formulated as follows: 
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where the C+ is the higher misclassification cost of the 

positive class, which is the primary interest, while C— is the 
lower misclassification cost of the negative class. Using the 
different error costs for the positive and negative classes, the 
hyperplane could be pushed away from the positive instances. 

In this article, we fix C— = C and C+ = C×Crf, where C and Crf 

are respectively the regularization parameter and the ratio 
misclassification cost factor. We choose the Radial Basis 
Function (RBF) as kernel function of SVM.  

B. Measure optimized Cost-Sensitive SVM 

This algorithm uses a wrapper approach to perform the 
search for the potentially optimal misclassification cost, 
intrinsic parameters, and feature subset of CS-SVM 
simultaneously in the parameter space under the guidance of 
performance evaluation measure.  

In this paper, for the multivariable optimization, 
especially the hybrid multivariable, the best methods are 
swarm intelligence technique. We choose the particle swarm 
optimization (PSO) as our optimization method because it is 
very mature and easy to implement. In addition, many 
experiments claim that PSO has equal effectiveness but 
superior efficiency over the GA [14]. PSO optimizes an 
objective function by a population-based search. The 
population consists of potential solutions, named particles. 
These particles are randomly initialized and move across the 
multi-dimensional search space to find the best position 
according to an optimization function. During optimization, 
each particle adjusts its trajectory through the problem space 
based on the information about its previous best performance 
(personal best, pbest) and the best previous performance of its 
neighbors (global best, gbest). Eventually, all particles will 
gather around the point with the highest objective value. The 
position of individual particles is updated as follows: 
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where vi
t indicates velocity of particle i at iteration t, w  

indicates the inertia factor, C1 and C2 are the cognition and 
social learning rates, which determine the relative influence 
of the social and cognition components. r1 and r2 are 
uniformly distributed random numbers between 0 and 1, xi

t is 
the current position of particle i at iteration t, pbesti

t indicates 
best of particle i at iteration t, gbestt indicates the best of the 
group.  

 (1) Particle design 
The misclassification cost, intrinsic parameters and feature 

subset for SVM need to be searched at the same time, thus the 
solution in PSO includes three parts: the ratio 
misclassification cost, the intrinsic parameters, and the 
feature subsets. For feature subset, each feature is represented 
by a 1 or 0 for whether it is selected or not. Fig. 1 illustrates 
the mixed solution representation in the PSO.  
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Fig. 1 Solution representation 

The variables needed to be optimized are enormous and 
mixed, since the costs and parameters we intend to optimize 
are continuous while the feature selection is discrete. PSO 
was originally developed for continuous valued spaces, the 
discrete PSO [15] can solve the discrete variables. The major 
difference between the discrete PSO and the original version 
is that the velocities of the particles are rather defined in terms 
of probabilities that a bit will change to one. Using this 
definition a velocity must be restricted within the range [0, 1], 
to which all continuous values of velocity are mapped by a 
sigmoid function: 
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Equation 4 is used to update the velocity vector of the 
particle while the new position of the particle is obtained 
using Equation 5. 
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Where ri is a uniform random number in the range [0,1] . 

(2) Fitness function 
Evaluation measures play a crucial role in both assessing 

the classification performance and guiding the classifier 
modeling. For imbalanced datasets, the average accuracy is 
not an appropriate evaluation metric.  We used the G-mean 
and AUC as the fitness function to optimize the CS-SVM 
separately. These two different evaluations reflect different 
aspect of the classifier. The AUC concerns the ranking ability 
and the G-mean concerns the two accuracies of both classes at 
the same time ( *G mean Sensitivity Specificity  ). 

 (3)The procedure for the proposed MOCS-SVM 
The detailed algorithm about the measure oriented cost 

sensitive SVM, MOCS-SVM, is shown in Algorithm 1.  
Algorithm 1 MOCS-SVM  

Input: Training set D; termination condition T; population siz SN; metric E; 
NumFolds(3) 

Randomly initialize particle population positions and velocities (including 
cost, intrinsic parameters, and feature subset) 
repeat 

 foreach particle i 
       Construct the Di with the feature selected by the particle i (xi) 
       for k=1 to NumFolds 

Separate Di randomly into Trtk
i  (80%) for training and Trvk

i   (20%) for  
validation  

  Train CS-SVM with ratio cost and intrinsic parameters optimized by  
the particle i on the Trtk

i 
  Evaluate the cost sensitive classifier on the Trvk

i  , and obtain the value  

Mk
i based on evaluation metric E 

end for 
Mi=average(Mk

i), and assign the fitness of particle i (xi) with Mi  
    if   fitness (pbesti) <= fitness (xi)    then pbesti = xi  

   end foreach 
   set gbest as best pbest 
  foreach particle i 
      update velocityi and positioni  with Eq. 2 - 5. 
end foreach 
until T 
output optimal parameters, ratio cost and feature subset of gbest  

It is a wrapper framework for empirically discovering 
the potential misclassification cost ratio, intrinsic parameters 
and feature subset for CS-SVM oriented by the measure 
(G-mean and AUC). The 3-fold cross validation is applied to 



  

evaluate classification performance for each potential 
solution of particles to avoid any estimation biases. The 
averaged performance measure is calculated as the fitness 
value of each solution in the particle. 

III. EXPERIMENTAL STUDY 

A. Potential Nodule Candidates Detection 

Our database consists of 98 thin section CT scans with 
106 solid nodules, obtained from Guangzhou hospital. These 
databases included different sizes nodules, annotated by three 
expert radiologists. The nodule locations of these scans are 
marked by expert radiologists. For obtaining the candidate 
nodules, we employ the 3D hessian filter to detect the 
candidate nodule VOI (Volume of Interest) and use the 3D 
region growing to get the core region [16]. Fig. 2 shows 
some example result images of candidate VOI detection. We 
obtained 95 true nodules as positive class and 592 
non-nodules as negative class from the total CT scans.  

 
Fig. 2 Potential nodule initial detection. TP indicated by arrow, other 

spots are FP 

B. Feature extraction 

In order to more accurately identify true or false positive 
nodules, we calculated multiple types of image features for 
each nodule candidate: intensity, shape and gradient. This 
feature extraction process generated 43 image features. This 
section gives a brief introduction to the features we have 
extracted. All the features are scaled into [-1,1] in the dataset.  

(1) Intensity feature  
The nodules often have higher gray values than parts of 

vessels misidentified as nodules; and the intensity distribution 
of nodule’s CT appearance can be approximated by a 
Gaussian function. Therefore, we use the statistical global 
gray feature and the radial distribution feature to describe the 
gray distribution within the candidate objects. The gray value 
within the objects was characterized by use of seven statistics 
(mean, variance, max, min, skew, kurtosis, entropy).  

In order to capture the volume intensity distribution along 
the radial direction of the nodule candidates, we extract the 
feature of radial intensity distribution (RIS). The vector of RIS 
feature for nodule object should be decreasing, while for a 
non-nodule it changes irregularly. It is computed as follows: 

                        1( , ) ( , , )i i i i ii
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Where I(xi,yi,zi) is the gray value in the position of (xi,yi,zi),  

and 
2 2 2
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(xc,yc,zc) is the coordinate of the center. 

We divide the volume into five sub-volumes with equal 
radius. The average intensity values of RIS(ri+1, ri) (i=0,…,4) 
are calculated in each sub-volume and normalized.  

(2) Shape  feature  

Based on the fact that an isolated nodule or a nodule 
attached to a blood vessel is generally either depicted as a 
sphere or has some spherical elements, while a blood vessel is 
usually oblong, we attempt to distinguish true nodules from 
false ones by calculating the volumetric shape index (SI), 
curvedness (CV) [16], and other explicit shape features to 
characterize the 3D shape. SI represents the local shape 
feature at each voxel while being less sensitive to the image 
intensity. It can be defined as:   
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where k1(p) and k2(p)  are principal curvatures at voxel p.  
The curvedness quantifies how highly curved a surface is. It 
can be calculated as follows: 
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The SI and CV features are calculated based on each pixel, 
and they are further characterized by seven statistical 
operations introduced above. Some other explicit shape 
features were also extracted including the volume, the surface 
area and compactness.  

(3) Gradient distribution feature 
The true nodules have a high concentration because they 

grow from the center to surround, thus nodules have high 
concentration of gradient vector. We utilize the gradient 
concentration (GC) feature to characterize the degree of 
convergence of the gradient vectors at voxel p [17]. It is 
defined by: 
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where D is the number of the symmetrically direction vectors 
dl originating from p. The angle cos ( )il p is calculated 

between dl and gi
l, where gi

l  is the gradient vector located at 
distance l from p in direction dl .We also calculate the 
gradient field strength at each pixel. The concentration and 
strength features based on every pixel are further 
characterized by seven statistical operations.  

C. Potential nodules candidates classification 

In this experiment, for the PSO setting in MOCS-SVM, 
the initial parameter values of it in our proposed method were 
set according to the conclusion drawn in [18]. The parameters 
used were: C1=2.8, C2=1.3, w=0.5. The particle number was 
set by 30, and the termination condition was set by 500 
cycles. Along with these parameters in PSO, the other 
parameters are the upper and lower of limit parameters to be 
optimized. The ranges for C and γ are based on the one as 
recommended in [19]. The range of C and γ are (2-5, 215) and 
(2-15, 23), respectively. The range of ratio misclassification 

cost factor Crf was empirically set [1, 100×Nneg / Npos]. All the 

experiments are conducted by 10-fold cross validation. 
LibSVM is used as the implementation of SVM [19]. 

 (1) Experiment I 
In this experiment, the comparison is conduct between the 

intermediate or basic methods, such as basic SVM, basic 
CS-SVM, optimized CS-SVM with grid search, and our 
method MOCS-SVM with/without the feature selection 



  

guided by G-mean (MOCS-SVMGM) and AUC 
(MOCS-SVMAUC). All SVM models in this experiment use 
the RBF kernel. For basic SVM and CS-SVM, the intrinsic 
parameters are chosen with default values (C=1 and γ =1), 
ratio cost Crf=Nneg / Npos. For the optimized CS-SVM with 
grid search, we also need to treat this misclassification cost 
ratio as a parameter to optimize. Since it is not feasible to use 
a triple circulation for optimizing the best parameters, we 
optimize the best parameter pair(C and γ) firstly, then 
optimize the cost ratio locally to maximize G-mean based on 
the best parameter pair(C and γ) obtained before.  

Table 1.  Experiment results with respect to AUC, G-mean (GM) and the 
feature size (Fea) 

MOCS- 
SVMGM 

MOCS- 
SVMAUC 

 
 

SVM CS-SVM Grid 
CS-SVM 

 FS  FS 

AUC 0.751 0.816 0.854 0.879 0.929 0.915 0.937 

GM 0.526 0.648 0.739 0.834 0.878 0.827 0.855 

Fea 43 43 22 43 24 

From the result in Table 1, we found that simultaneously 
optimizing the feature subset, parameter and cost ratio 
generally helps CS-SVM, regardless of feature selection or 
not. Meanwhile, under the condition where the feature 
selection is not carried out, we found the optimization for all 
the factors simultaneously with PSO outperforms the 
optimization with grid search, which optimizes the intrinsic 
parameter firstly, then search the optimal misclassification 
cost parameter based on the best intrinsic parameters. It lacks 
many potential parameters pairs not to be searched in the 
parameter space. Hence, it shows that the parameters need to 
be searched at the same time. As expected using different 
measure for guiding optimization results in different feature 
subset. Because different measures have different biases, they 
select different feature subset to obtain the best performance.  

 (2) Experiment II 
   We conduct the comparison between our method and the 
other state-of-the-art approaches for dealing with the 
imbalanced data, such as AdaCost [20], random 
under-sampling (RUS) [5], SMOTE (SM) [21] and 
SMOTEBoost (SMB) [22]. All the three sampling methods 
re-balance the two classes until the sizes of both classes are 
the same. The ratio cost of AdaCost is set to the ratio between 
the sizes of two classes. The results are shown in Table 2. We 
can see that MOCS-SVM produced the best results among all 
the tested methods for imbalanced data learning. It means that 
our method can be applied for FPR on the nodule detection. 

Table 2.  Experiment result with respect to the value of AUC and G-mean  
 AdaCost RUS SM SMB MOCS- 

SVMGM 
MOCS- 
SVMAUC 

AUC 0.785 0.703 0.848 0.855 0.929 0.937 

GM 0.662 0.590 0.726 0.748 0.878 0.855 

IV. CONCLUSION 

The false positive reduction is a class imbalance task in 
the Lung nodule detection. In this paper, we propose a 
wrapper paradigm oriented by the performance measure as 
objective function with respect to misclassification cost, 
feature subset and intrinsic parameter of SVM. The 

optimization processing is through an effective swarm 
intelligence technique, PSO. Our measure optimized 
framework could wrap around an existing cost-sensitive 
classifier. Through theoretical justifications and empirical 
studies, we demonstrated this method to be effective in the 
FPR issue. This method can be applied on other computer 
aided detection, such as for breast or colon. Due to the nature 
of PSO, searching of parameters might be time-consuming. 
Since this searching is usually an off-line procedure, the time 
for learning is not a crucial issue. 

REFERENCES 
[1]    R.T. Greenlee, T. Murray, S. Bolden, P.A. Wingo, Cancer statistics, 2000, 

CA Cancer J Clin 2000;50:7–33. 

[2] Q. Li, Recent progress in computer-aided diagnosis of lung nodules on 
thin-section CT, Computerized Medical Imaging and Graphics 2007, 
31(4-5), 248-257.  

[3]    L. Boroczky, L.Z. Zhao. & K.P. Lee, Feature Subset Selection for Improving 
the Performance of False Positive Reduction In Lung Nodule CAD, IEEE 
Transactions On Information Technology In Biomedicine, 2006, vol. 10, 
NO. 3. 

[4] K. Suzuki, S.G. Armato, F. Li, S. Sone & K. Doi, Massive training artificial 
neural network for reduction of false positives in computerized detection of 
lung nodules in low-dose computed tomography,  Med. Phy., 2003, vol. 30, 
pp. 1602–1617. 

[5] H. He, E.A.  Garcia, Learning from imbalanced data, Knowledge and Data 
Engineering, IEEE Transactions on 21,2009, 1263-1284. 

[6] J. Dehmeshki, J. Chen, M.V. Casique, & M. Karakoy, Classification of lung 
data by sampling and support vector machine, IEEE EMBS annual 
international conference, 2004, 3194-3197. 

[7] P. Campadelli, E. Casiraghi, & G. Valentini, Support vector machines for 
candidate nodules classification, Neurocomputing 68, 2005, 281–289. 

[8] M. Dolejsi, J. Kybic, M. Polovincak. & S. Tuma, Reducing false positive 
responses in lung nodule detector system by Asymmetric AdaBoost,  ISBI. 
2008, 656-659. 

[9]    J. Van Hulse, T. Khoshgoftaar, A. Napolitano, R. Wald, Feature selection 
with high-dimensional imbalanced data, in: ICDM, pp. 507-514, 2009. 

[10] J. Kennedy, R.C. Eberhart, Particle swarm optimization, IEEE Int. Conf. 
Neural Networks, 1995, pp.1942–1948. 

[11] M. Kubat, R. C. Holte, & S. Matwin, Machine learning for the detection of 
oil spills in satellite radar images, Machine learning, 1998, 30(2), 195-215. 

[12] T. Fawcett, ROC graphs: Notes and practical considerations for 
researchers,  Machine Learning 2004, 31, 1-38. 

[13] K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of 
support vector machines, Proceedings of the International Joint Conference 
on AI, 1999: 55–60. 

[14] D. Martens, B. Baesens, T. Fawcett. Editorial Survey: Swarm Intelligence 
for Data Mining,  Machine Learning 82(1):1-42, 2011. 

[15] M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdel, A novel binary particle 
swarm optimization. In Control &  Automation. MED 07. Mediterranean 
Conference on, 2007, pp. 1–6, Athens. 

[16] Q. Li, F. Li & K. Doi, Computerized detection of lung nodules in 
thin-section CT images by use of selective enhancement filters and an 
automated rule-based classifier, Academic radiology, 2008 15(2): 165. 

[17] H. Kobatake and M. Murakami, Adaptive filter to detect rounded convex 
regions: Iris filter, in: ICPR, vol.II, 1996, pp. 340–344. 

[18] A. Carlisle, G. Dozier, An Off-The-Shelf PSO. Particle Swarm 
Optimization Workshop, 2001, pp. 1–6.  

[19] Hsu CW, Chang CC, Lin CJ. A Practical Guide to Support vector 
Classification, National Taiwan University Technical Report, 2003. 

[20] W. Fan, S.J. Stolfo, J. Zhang, & P.K. Chan, AdaCost: Misclassification 
Cost-Sensitive Boosting, In: ICML, pp. 97-105, 1999. 

[21] N.V. Chawla, K.W. Bowyer, L.O. Hall & W.P. Kegelmeyer, SMOTE: 
Synthetic minority over-sampling technique. Journal of Artificial 
Intelligence Research, 2002, pp. 341–378. 

[22] N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer, SMOTEBoost: 
Improving Prediction of the Minority Class in Boosting. in: PKDD, 2003,  
pp. 107-119. 


