Abstract:
The analysis of symbolic dynamics applied to physiological time series is able to retrieve information about dynamical properties of the underlying system that cannot be ...Show MoreMetadata
Abstract:
The analysis of symbolic dynamics applied to physiological time series is able to retrieve information about dynamical properties of the underlying system that cannot be gained with standard methods like e.g. spectral analysis. Different approaches for the transformation of the original time series to the symbolic time series have been proposed. Yet the differences between the approaches are unknown. In this study three different transformation methods are investigated: (1) symbolization according to the deviation from the average time series, (2) symbolization according to several equidistant levels between the minimum and maximum of the time series, (3) binary symbolization of the first derivative of the time series. Each method was applied to the cardiac interbeat interval series RRi and its difference ΔRRI of 17 healthy subjects obtained during head-up tilt testing. The symbolic dynamics of each method is analyzed by means of the occurrence of short sequences (`words') of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), words with one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis showed that for method 1 0V%, 1V%, 2LV% and 2UV% changed with increasing tilt angle. For method 2 0V%, 2LV% and 2UV% changed with increasing tilt angle and method 3 showed changes for 0V% and 1V%. In conclusion, all methods are capable of reflecting changes of the cardiac autonomic nervous system during head-up tilt. All methods show that even the analysis of very short symbolic sequences is capable of tracking changes of the cardiac autonomic regulation during head-up tilt testing.
Published in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 03-07 July 2013
Date Added to IEEE Xplore: 26 September 2013
Electronic ISBN:978-1-4577-0216-7
ISSN Information:
PubMed ID: 24110868