Abstract:
A methodology to detect sleep apnea/hypopnea events in the respiratory signals of polysomnographic recordings is presented. It applies empirical mode decomposition (EMD),...Show MoreMetadata
Abstract:
A methodology to detect sleep apnea/hypopnea events in the respiratory signals of polysomnographic recordings is presented. It applies empirical mode decomposition (EMD), Hilbert-Huang transform (HHT), fuzzy logic and signal preprocessing techniques for feature extraction, expert criteria and context analysis. EMD, HHT and fuzzy logic are used for artifact detection and preliminary detection of respiration signal zones with significant variations in the amplitude of the signal; feature extraction, expert criteria and context analysis are used to characterize and validate the respiratory events. An annotated database of 30 all-night polysomnographic recordings, acquired from 30 healthy ten-year-old children, was divided in a training set of 15 recordings (485 sleep apnea/hypopnea events), a validation set of five recordings (109 sleep apnea/hypopnea events), and a testing set of ten recordings (281 sleep apnea/hypopnea events). The overall detection performance on the testing data set was 89.7% sensitivity and 16.3% false-positive rate. The next step is to include discrimination among apneas, hypopneas and respiratory pauses.
Published in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 03-07 July 2013
Date Added to IEEE Xplore: 26 September 2013
Electronic ISBN:978-1-4577-0216-7
ISSN Information:
PubMed ID: 24110950