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Abstract— Intracortical neural recordings are typically high-  ever, the classification rate alone is insufficient to debeem
dimensional due to many electrodes, channels, or units and how the neural response varies on a trial-by-trial basis.
high sampling rates, making it very difficult to visually in- A number of unsupervised methods [2] have been explored
spect differences among responses to various conditionsy B Lo ) )
representing the neural response in a low-dimensional spag  (© analyze the similarity between trials and the evolutién o
a researcher can visually evaluate the amount of informatin  the neural response during trials. Here we have the goal
the response carries about the conditions. We consider a of finding a low-dimensional representation for visualiza-
linear projection to 2-D space that also parametrizes a mett  tjon that preserves similarities among conditions. The-low

between neural responses. The projection, and corresporrtj ; ; s . .
metric, should preserve class-relevant information pertiing dimensional representation is produced by a linear projec

to different behavior or stimuli. We find the projection as a  tiOn trained using just the discrete labels corresponding t
solution to the information-theoretic optimization problem of  different conditions. We explore this approach on two real
maximizing the information between the projected data and datasets, and quantify the performance by using nearest-

different types of neural responses: motor cortex neuronafiring projected spaces.

rates of a macaque during a center-out reaching task, and @t
field potentials in the somatosensory cortex of a rat during

tactile stimulation of the forepaw. In both cases, projectd data ~ A. Learning Low-dimensional Representations
points preserve the natural topology of targets or peripheal

touch sites. Using the learned metric on the neural response Previous research has been conducted on unsupervised
increases the nearest-neighbor classification rate versutie  methods for low-dimensional representations of neurad dat
?rllrglgsrllddig(t)?];sthus, the metric is tuned to distinguish amorg [3], [4]. While principal component analysis may seem
: appropriate for the task, the first two principal components
often fail to produce useful projections of neural data [5].
Non-linear dimensionality reduction algorithms produce
Although neural recordings may be very high-dimensionalow-dimensional representations without supervision or
often stimuli are applied or the behavior is performed irknowledge of the temporal ordering within trials [6]. The
2-D or 3-D space. This is especially true for motor andéiepresentations produced by manifold learning are often
tactile experiments. The similarity among the conditiorsym tuned to either preserve local similarities in data, [7], [8
correspond to similarity among behaviors or stimuli, sush &0r to preserve global structure. Consequently, the chdice o
spatial organization of the targets in a reaching task or tf¥mphasizing either local or non-local structure will infige
location of touches in a somatosensory task. In these cas#€ projection, and no explicit mapping is found to apply to
it may be possible to find a low-dimensional representationovel data.
of the neural responses. If this representation presehees t Another approach is to train state-space models to explain
relationships among the conditions, then it can be used temporal relationships within time-series data. Stateep
help understand distinctions in the neural data betweesethgmodels can easily be applied to novel data. They enable
conditions. analysis of the trial-wise variance by using a low-dimenaio
Alternatively, simply decoding the stimulus from the neu-Or discrete state variable to describe the temporal ewnluti
ral responses can also gauge the task-relevant informatioh the neural response. Gaussian process factor analysis
carried by the neural responses, such as in decoding tf has been used on neural responses relating to motor
movement during a natural reaching task [1]. This is esp&lanning and execution. The approach assumes all of the
cially true if the stimulus exists in a continuous space. Howtrials have temporal trajectories that are captured in a low
dimensional space, and the covariance of these trajestorie
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model representation, either continuous or discrete,efulis where the trace constraint prevents the solution from grgwi
in distinguishing different conditions. unbounded.

We consider the case when known labels are used inldeally, minimizing the conditional entropys,(L|Y)
training the low-dimensional representation. A classie exwould require knowing the distributions &f andL. In prac-
ample of this is Fisher discriminant analysis [14], [15].€Th tice however, these distributions are unknown and the only
dimensionality reduction can be posed as a metric-learnirayailable information is provided by a samdléx;, 1;)}Y,.
problem [16]. The goal of metric learning is to parametrize & common approach to this problem is to estimate the en-
distance function (through a projection) such that exampldropy of the data in a two-stage approach. First, the density
from the sample class are deemed close and examples frtime data is estimated using methods such as Parzen windows;
different classes are considered far apart. Note alsorthat the approximated entropy is then computed by plugging this
explicit classifieris used in constructing the projection, thatestimate into the entropy definition. The disadvantage of
is, the proposed algorithm does not rely on a particulaghis approach is requiring the solution to a rather difficult
classifier or the classification error. Instead, the alparit problem (density estimation) before the desired quantty c
explored here [17] solves the metric-learning problem gisinbe obtained.
information-theoretic quantities [18], [19], and a ne&res The authors of [19], [17] propose an alternative method
neighbor assignment is performed post-hoc. We compate circumvent the above two-stage process and obtain a
against local Fisher discriminant analysis (LFDA) [15], adifferentiable quantity that is amenable for optimization
state-of-the-art method with an analytic solution base&oninstead of computing an estimator of entropy, the authors

generalized eigenvalue problem. propose a quantity that exposes similar properties to Renyi
a-order entropy and is based on the data.
. METHOD Let K be the matrix representing the distance between
A. Neural data representation samples transformed by a Gaussian function, with user
_ . _ parametew,
Multi-electrode arrays implanted into the cortex can pro-
vide both local field potentials (LFPs) and spike trains 1 (x;i —x;)TAAT (x; — x;)
corresponding to series of neuronal action potentialsréHe Kij = P o 252 (2

the spike trains are quantized to an instantaneous firirgg rat

using non-overlapping fixed-width bins.) For both LFPs an@dndL be the matrix of class co-occurrences wherp= 1 if
firing rates, we consider a single sample from each trial@s th; = i, and zero otherwise. The proposed conditional entropy
concatenated response of all the selected channels/eurenorder alpha can be computed as:

for the entire trial. Letx; € R? denote the combined

population response for thih trial, i € {1,...,n}. Let Sa(L]Y) = So (nKoL) — Sy (K) ©))

l; € {1,..., L} denote the label corresponding to a certain

_ 1 @
condition or stimulus for théth trial. We wish to find a linear Wheré Sa(B) = 1 log(trB*) and o denotes the
projectiony; = ATx; € R?, A € R¥?,p < d such that the Hadamard product. Notice thdB® is a matrix function

projected points(y;} can be used to classify and visualizefor Which we can use the spectral theorem to compute the

the neural responses to different conditions. As discusse-‘ﬂ""‘dient of (3) atA as:
learning this projection for classification is referred to a .
metric Igearning J VaSa(L]Y) = X" (P — diag(P1)) XA (4)

_ ) ) ) where
B. Information-Theoretic Metric Learning
Given a set of points and labef$x;, /;)}Y,, we seek to P = Ko(nLoVS, (nK;L) — VSa(K)), (5)
learn a positive semidefinite matrik A", that parametrizes X = (x1, X2, "=+, XN) 7, (6)
a Mahalanobis distance between two sampleg(asx’) = VS.(B) = #UAMIUT, (7)
\/(x —x')TAAT(x — x/). In terms of the projected sam- (1- C;)tr(]_?’ ) o
B = UAU" : eigen-decomposition dB, (8)

plesy = ATx andy’ = ATx/, the metric is Euclidean
dx,x') = /(y-y)"(y —d{/)- Our goal is to find @ and1 is an x 1 vector of ones. We can use (4) to search for
parametrization matrbA € R™? such that the conditional A jteratively using gradient descent, conjugate gradient, o
entropy S, (L[Y) of the labels{l;} given the projected any other method using the gradient information. Because
samples{y;} is minimized. (Here we use = 2 so the he performance surface has local optima, initializatién o

projected data can be visualized.) We refer to this problerg s important. We explore using random Gaussian matrix
as conditional entropy metric learning (CEMLRnd it can o ysing the analytic solution obtained by LFDA [15] as

be posed as the following optimization problem: initialization; another option is to try multiple restarasd
minimize S, (L[Y) choose the projection th_at_m|n|m|zes the cond|t|on§1I gtro
AgRIXp (1) Sa(L[Y). A more sophisticated algorithm would improve

subject to tr(ATA) = p, performance.



IIl. NEURAL RECORDINGS Projected Features

All animal procedures were approved by the SUNY Down
state Medical Center IACUC and conformed to Nationa . .
Institutes of Health guidelines.

A. Motor Cortex During Reaching Task

A female bonnet macaque was trained to perform a
8 target center-out reaching task [20]. After the monke ‘%
became proficient at the task, a 96-channel micro-electro R
array was implanted in the motor cortex (M1). Recorde:
firing rates from 185 units are binned into 100ms bins witl ¢
7 bins per reach trial, yielding a 1295-dimensional vector f
each trial. Here we use 178 successful reach trials from ol
session.
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B. Cortical Somatotopy of Rat Forepaw Fig. 1.  (Left) Target orientation for the center-out reaelskt (Right)

Cortical LEP ded duri t | tactile sti The neural responses for all the reach trials projectedarteD space and
) or '(.:a S were recorae _u.”ng natural tactile stimug,jeqg by the reach target for each trial. The points forstmae reach target
lation (light thwacks of forepaw digits and palm) of a femaleare well clustered, and clusters for neighboring targefsapas neighbors
Long-Evans rat under anesthesia. The rat was anesthetize@roiected space: preserving the original target arnaveg.

with isofluorane, and a 32-channel Michigan Probes elec-

trode array was inserted into the hand region of primar

CEML: PCA-32, LFDA init.f —a——a—

somatosensory cortex (S1). The array had 8 contacts OfNcew: pca-32. random init | e
shanks. Another array was inserted into VPL region of th LFDA: PCA-32¢ TS e

. PCA-32} a8 O Touch Site 4
thalamus, but the signals are not used here. The LFPs w Original| b+ | O ReachTarget| |
filtered with cutoffs (5Hz, 300Hz) and sampled at a rate © 0 w0 s o 70 s w0
1220.7Hz. The signals were digitally filtered using a 3rc % correct
order Butterworth high-pass filter with cutoff of 4Hz and

. . . . Fig. 2. Nearest neighbor prediction performance for bottaskts: 2/3
notch filters at 60Hz and its first 5 harmonics. training and 1/3 testing. Metric-learning is able to ins®ahe classification

The experimental procedure involved delivering 225 tactilrate by 10% and 20% versus the original space for the two etata&rror
touches to the rat's forepaw at 9 sites (4 digits and 5 sitdgrs showt1 standard deviation across 30 divisions of the datasets.
on the palm) using a motorized probe. For each location,
the probe was positioned 4mm above the surface of the skin
and momentarily pressed down for 150ms; this was repeatgdndomly partitioned the trials into training and testiregss
25 times at random intervals. For analysis, 170ms (208 tim3 of each target's trials were used for training and the
indexes) of the 32 channel LFP response was used; this yiel@nhainder for testing. Metric learning was performed using

a 6656-dimensional vector for each touch. only the training set, and the test-set samples were cladsifi
by their nearest neighbor (using Euclidean distance) in
IV. RESULTS the training set. To increase classification rate and avoid

A. Motor Cortex During Reaching Task overfitting, only the first 32 principal components were kept

For the reaching task experiment described in section I1{the same as the next datasetjvas lowered to,2, and the
A, the dimension of the vectors is greater than the numb&f€P Size was increased to 0.1. We compared the initiaizai
of trials. So PCA is performed on the collection of trials Of 4 with random entries versus using the LFDA projection.
The first 130 components are kept, and the components e n_egrest-ne|ghb0r classification was also performed on
normalized and decorrelated. The normalized componerift original data and the PCA-preprocessed data. The mean
are then used as inputs to the metric learning problem, (% pd sta_nt;igrd deviation of the cIassn‘|cat|or_1 rat_e for 30 Mont
(3), and (2), with an entropy order af= 1.01 ando = 5v/2. arlo divisions of the dataset are shown in Fig. 2.

Gradient descent is run with a stepsize of 0.002 for 500
iterations.

When using all 178 trialsSCEML is able to find a projec-
tion that separates the reach trials into discrete clusteich The same procedure described in the preceding section
corresponding to a different target. A typical projectiothv was performed on the LFPs recorded from S1 during natural
samples labeled by target is shown in Fig. 1. Also shown ateuch of the forepaw, as in section IlI-B. Parameters were
the target directions and corresponding target index nusnbethe same for both the visualization and the classificati@n: 3
Clearly the projection preserves the relative arrangeraént PCA componentsy = /2, and step size of 0.1. A typical
the target placement. projection with points labeled by the touch site is shown

Unfortunately, this level of separation corresponds to aim Fig. 3. The nearest-neighbor classification results scro
overfit 2-D linear projection. In order to test this, we30-run Monte Carlo test are shown in Fig. 2.

B. Cortical Somatotopy of Rat Forepaw



Projected Features
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