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Abstract² In this paper we present the preliminary results of 

a pioneering attempt to predict the timing of steering actions in a 

driving task from non-invasive EEG measurements. The 

experiment took place with the subjects driving a car at  a 

constant speed on a simulated highway in a driving simulator. 

The EEG activity was analyzed during periods of straight 

driving and during lane change actions. Classifiers were built on 

the signals recorded over the motor areas for straight and 

pre-steering periods. The onset of the steering actions was 

detected on average 811ms before the action with a 74.6% true 

positive rate. 

I. INTRODUCTION 

Brain-computer interfaces (BCI) provide means of 
interaction by decoding brain signals correlated with specific 
tasks or cognitive states [1]. We are trying to develop a BCI 
specially tailored for facilitating the interactions between 
drivers and intelligent cars. The cognitive state of the driver or 
the intentions for future actions could be used to create a more 
intuitive vehicle interface, leading to less stress and an 
improved driving experience. Arousal level prediction based 
on electroencephalogram (EEG) and electrooculogram 
(EOG) has been vastly investigated [2], [3], as well as 
attention level detection, both in real and simulated driving 
environments [4]. At the same time the automobile industry 
has made big steps towards the implementation of smart cars 
that could interpret the environment, provide feedback to the 
driver and, if needed, control the vehicle [5]. As cars become 
more intelligent the interaction with the user may increase (to 
provide more feedback, or suggest potential maneuvers). 
Efforts have been made to evaluate precisely the drivers¶ 
workload in order to facilitate information delivery from the 
vehicle [6]. Our philosophy is to decode the drivers¶ brain 
activity related to driving, and to use these results in order to 
align the actions of the autonomous vehicle with the driver¶s 
intention. For example, being able to accurately predict future 
actions of the driver would enable the vehicle to adjust, if 
needed, its dynamics or position in order to facilitate those 
actions. In such a scenario the vehicle could provide support 
without explicit feedback or interference, thus greatly 
improving the feeling of easiness and comfort in control that 
the driver has. Several preliminary studies aimed at detecting 
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movement intention showed encouraging results [7]. On the 
other hand, IHZ�DWWHPSWV�KDYH�EHHQ�PDGH�WR�SUHGLFW�GULYHUV¶�
motion while driving. Haufe et al. build a system to predict the 
timing of braking when the car in front slows down [8]. In 
their research, the response generated by the visual cue of the 
brake lamps in front and also the motor cortex activity were 
considered simultaneously. One of the first reports of neural 
correlates of movement was made by Kornhuber and Deecke 
back in 1965 [9] showing a slow cortical potential (SCP) 
appearing 1.5 s before movement. Libet et al. made a deep 
analysis of these potentials proving the presence of 
preparatory brain activity beginning 1 s before the onset of 
movement [10][11]. While most of the previous studies have 
been performed with simplified protocols, this study aims at 
detecting steering action movements from non-invasive EEG 
measurements in a natural driving task performed in a realistic 
driving simulator. Since SCPs are difficult to be recorded 
even in controlled environments this study is taking quite a 
challenge in performing the analysis on more natural 
environment recordings. 

II. METHODS 

A.  Experimental Protocol 

A simple but realistic driving simulator was used for this 
experiment. The layout was close to a small size vehicle using 
a real automobile electrical seat in order to accommodate the 
subject in a comfortable driving position. To reduce possible 
electrical artifacts, electrical force feedback steering systems 
have been avoided. Instead a passive system based on springs 
and fluid damping was used to generate a realistic steering 
feeling.  

The driving scene simulates a two lane highway in 
Switzerland. Six subjects with normal or corrected to normal 
vision were instructed to drive at constant speed (approx. 120 
km/h) and, at certain parts of the course, to do a lane change to 
the left followed by one to the right. The timing of the lane 
changes was self paced. No other vehicles were present in the 
scenario. 

Steering and pedal positions, vehicle dynamics and the 
position of the vehicle in space were recorded at a sampling 
rate of 256 Hz. Another computer recorded 64 EEG channels 
placed according to the 10/20 extended standard at 2048 Hz 
and down sampled at 256 Hz. The two recordings were 
synchronized by a hardware trigger. The recording was split in 
5 sessions of 12 min recorded the same day. At the subject¶s 
request shorter or larger breaks were taken between the 
sessions with the goal of keeping low fatigue and high 
concentration levels throughout all the sessions. In order to 
adapt to the driving simulator visual field and to the controls, a 
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30 min trial driving session was performed before the 
experiment by all subjects. At that time the driving simulator 
sickness tendencies were also evaluated with all the subjects 
and no subject showed  sickness  symptoms.   

Figure 1.  Experimental protocol. A. Subject sitting in the driving simulator. 
The seat is an electrically adjustable real automobile seat. The pedals and 
steering wheel are placed in a layout close to a small car¶s setting  B. Visual 
field showing the simulated Swiss highway  

B. Driving data processing  

The simulated highway was shaped as a large oval with two 
long straight lines and two large curves in order to provide 
continuous recording over long periods of time. One lap took 
about 2 min and for each straight line the subject had to 
perform a lane change to the left and one to the right. The 
highway section for lane change was roughly predefined but 
the subject was allowed to perform the lane changes at any 
place within these sections in order to study self-paced actions. 
Figure 2 A presents the whole trajectory of the vehicle for 
several laps and on the right a detailed view of the straight line 
segment.  
Lane changes and straight driving periods were identified 
from the trajectory and based on the steering data. The 
location of lane changes (green and red dots) is similar for 
each lap but not exactly at the same, indicating self-paced 
actions.  
Since the vehicle was driven at high speed (approx. 120 km/h) 
only small steering action were possible for the lane changes 
in order to avoid the vehicle leaving the road. The start point 

of the steering action was identified from the steering position 
and further used as the onset of movement (Figure 2B). The 
periods of straight driving where also evaluated using the 
steering profile. Periods where the steering activity was 
smaller than 3 degrees were considered as straight period, thus 
allowing small oscillations. 

Figure 2.  A. Vehicle trajectory on the whole circuit (left) and straight line 
(right). Red dots are the points where a lane change to the right was detected 
from the trajectories, green dots where a lane change to the left was detected 
and magenta rectangles show straight driving periods. B. Steering profile 
example on the straight line. The green rectangle is the area identified from 
the trajectory as a left lane change, the red rectangle as a right lane change 
and magenta rectangles show rather straight trajectories. The dots are the 
onset of the left steering action (green) and right steering action(red) 

 

C. EEG Signal Processing  

The EEG signals were filtered between 0.1Hz and 1Hz 
using a 4th order Butterworth filter. Next, common average 
reference (CAR) was used to remove background brain 
activity [12], and finally, the mean value was subtracted from 
each channel.  

Each time the driver changed lane defined a new trial. 
Within each trial, three types of epochs were defined: 
Preparation, Steering and Straight Epoch. Preparation Epochs 
designate the 4 s before the start of the steering action and 
Steering Epochs the 4 s after the start of the steering. Periods 
of 4 s on straight lines with no large steering actions are called 
Straight Epochs. Note that while the Preparation and Steering 
epochs are continuous in time, the Straight one is independent. 
However, the latter was chosen within the same lap and 
considered as part of the same trial. Even though more 
Straight epochs could be retrieved, for this study we used only 
the same amount as the Preparation epochs in order to retrieve 
a balanced number of epochs. For this study, left and right 
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steering actions were considered together, the comparison 
being performed between the Preparation Epochs and the 
Straight Epochs. Figure 3 A  shows the grand averages for the 
3 types of epochs on Cz, C1 and C2 for one subject. The other 
5 subjects showed similar trends with some differences in 
amplitude. On average, there were about 60 epochs of each 
type per subject. For the preparation trials a negative potential 
builds up more than 1s before the onset of the movement, akin 
to the reported Motion Related Potential. On the other hand, 
for the Straight epochs no particular activity appears. The 
topographic display in Figure 3 B shows that the negative 
potential is spread over the motor cortex. 

Figure 3.  A. EEG averages of C1 Cz C2 for one subject. t=0s is the onset of 
the steering action. The grand averages for the Straight trials show no 
significant time locked activity. In the second half of the Preparation period a 
negative potential locked on the onset of movement builds up and recovers in 
the first half of the Steering period B. Topographic representation for one 
subject. A negative potential time locked on the onset of steering is spread 
over the motor cortex. 

D. Single Trial Classification 

We assessed offline single trial classification using Linear 
Discriminant Analysis (LDA) [13]. LDA classifiers were 
trained on windows of Preparation and Straight trials data. In 
order to see the influence of the training data position in time, 
six different time windows were tested: from a window ending 
at 800 ms before the onset of the movement, until one ending 
300 ms before movement, in steps of 100 ms. Also two lengths 
of the window were considered: 250 ms and 500 ms. In total, 
for each subject, 12 different classifiers were trained using 48 
features: 8 equidistant points within the training window for 6 
channels (C1, Cz, C2, CP1, CPz, CP2). The more features one 

can use the more information is available to differentiate 
between classes. On the other hand more training data is 
needed. In this case we chose the number of features based on 
the estimated number of training samples. Since the number of 
trials was around 60 a simple method was applied to increase 
the number of samples used to train the classifiers. Instead of 
extracting one sample per epoch, three samples were extracted 
from each epoch. For the first sample, the values for the 
features were extracted from the window with the predefined 
length ending at the time of interest. Then, to extract two other 
samples the window was shifted backward about 70ms at a 
time, and a new sample was extracted. We chose a shift value 
such that in the portion where the windows overlap the values 
for the features are never from the same point of the epoch.  

After training, each of the classifiers was applied in a sliding 
window over the last 2s of the epochs. True Positive Rates 
(TPR) and False Positive Rates (FPR) across trials were 
calculated at each time point in a 5-fold cross-validation 
process. Here TPR is calculated as the percentage of test 
samples from Preparation data that have been correctly 
classified as Preparation. Similarly, FPR is the percentage of 
test samples from Straight data that have been wrongly 
classified as Preparation. 

III. RESULTS 

  Figure 4 shows the average TPR and FPR at each time point 
for the 12 classifiers for one subject (green and magenta lines, 
respectively). The top row shows classifiers trained on a 250 
ms window (w=250) and the bottom row shows the ones 
trained on 500 ms window (w=500). Each plot represents a 
different time of interest for which the classifier was trained 
(e.g., t=-0.8 means that the training window ends 800 ms 
before the onset). Chance level has been calculated by 
randomizing the data and performing the same classification 
10 times.  

Figure 4.  Average TPR and FPR for different training intervals and window 
lengths for one subject. Blue line is chance level, green line is TPR and 
magenta is FPR at that time  for Preparation Epochs across the 5 folds 

While the differences in TPR and FPR between the two 
window sizes and the 6 training positions are small, there is a 
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trade off between detection time and the TPR and FPR. The 
later the TPR peak, the higher it is and the lower FPR is. This 
reflects the increase of the negativity closer to the onset of the 
movement. 
We aggregated the results from each subject based on 2 types 
of criteria 

Earliest TPR Peak: the classifier with the earliest peak 
was chosen for each subject for each window size.  

Highest TPR Peak: the classifier with the highest peak was 
chosen for each subject for each window size. 

The average results across all the subjects are presented in 
Table1 

TABLE I.  CLASSIFICATION RESULTS 

Criteria 
Classifier Performance  

Window =250 ms Window=500 ms 

Earliest  Peak 
t=-811±46 ms 
TPR=74.65 ± 8.2% 

t=-760±31 ms 
TPR=74.9 ± 7.9% 

Highest Peak 
t=-430±220 ms 
TPR=76.9 ± 9.3% 

t=-613±169 ms 
TPR=79.4± 9.2% 

a. t=-811 means detection at 811 ms before onset of movement 

To better understand the differences between the 2 training 
windows and between the 2 criteria, False Positive rates were 
also taken into account. The results for all 6 subjects for the 
chosen classifiers are presented in Figure 5. In terms of 
predictive power the differences between the 4 classifier 
groups are small. This means that even using a shorter training 
window (250 ms) can yield similar predictive power with the 
larger one (500 ms). Also, in terms of predictive power, 
Earlier Peaking classifiers perform similarly to Higher 
Peaking classifiers.  

Figure 5.  Classifiers performance in ROC space. Closer to top left corner 
means better performance   

IV. CONCLUSIONS AND DISCUSSION 

Aiming at predicting GULYHU¶V� steering actions, we analyzed 
the brain activity correlates to upper limb movements in a 
simple lane change task. Firstly, we were able to confirm the 
presence of Motion Related Potentials time locked to the onset 
of movement, in this case steering. Secondly, we assessed the 
offline single trial classification with encouraging results. It is 

important to stress that the data was recorded during driving 
which means that the subject was not only performing arm 
movements as in previous in lab studies, but was involved in 
several cognitive processes such as attending to the 
continuous visual input and controlling the vehicle. 
Considering this, the fact that our classifiers were able to 
predict the onset of steering about 800 ms earlier with a TPR 
of approx. 74.6% is rather promising. We have also seen that 
there are no large differences when using a shorter window for 
classification which leaves the door open to lower 
computational means.  
A natural line for future works is to try to classify not only the 
onset of the movement but also the direction of the movement. 
Another line is obviously to come up with an online detection 
method and to develop a real interaction method. Having such 
a system in place is also essential to answer another open key 
question: what is the required minimal accuracy for such a 
system for the driver to feel comfortable in the interaction? 

ACKNOWLEDGMENT 

We would like to thank all subjects that have participated in 
the experiments spending long time in a simple repetitive task. 

REFERENCES 

[1] J. d. R. Millán, P. W. Ferrez, F. Galán, E. Lew, and R. Chavarriaga,F
Non-invasive brain-PDFKLQH�LQWHUDFWLRQ�´�in Int J Pattern Recognition 
and Artificial Intelligence, 2007,vol. 22, pp. 959±972, 

[2] &��+��&KXDQJ��3��&��/DL��/��:��.R��%��&��.XR��DQG�&��7��/LQ�³'ULYHU¶V�

cognitive state classification toward brain computer interface via using 
D�JHQHUDOL]HG�DQG�VXSHUYLVHG�WHFKQRORJ\�´�LQ IJCNN, 2010, pp. 1±7 

[3] F. C. Lin, L. W. Ko, S. Chen, C. Chen��DQG�&��/LQ��³((* based 
cognitive state monitoring and prediction by using the self constructing 
QHXUDO�IX]]\�V\VWHP�´�LQ�ISCAS, 2010, pp. 2287±2290 

[4] K. Itoh, Y. Miki, N. Kubo, Y. Takeda, H. Tanaka, ³A Study on 
Estimation the Variation of Driver's State by EEGs and EOGs´ , in SAE, 
2006.  

[5] Y. Kobayashi, T. Kimura, T. Yamamura , G. Naito et al., ³Development 
of a Prototype Driver Support System With Accelerator Pedal Reaction 
Force Control and Driving and Braking Force Control��´ in SAE 2006 

[6] L. Gheorghe and T. Sunda, ³Brain Waves Measurement Based 
Evaluation of Mental Workload Related to Visual Information While 
Driving, ´ in SAE, 2011 

[7] E. Lew, R. Chavarriaga, S. Silvoni, J. d. R. Millán, ³Detection of 
self-paced reaching movement intention from EEG signals�´ in 
Frontiers in Neuroengineering, 2012, Volume 5, 2±17. 

[8] S. Haufe, M. S. Treder, M. F. Gugler, M. Sagebaum, G. Curio, B. 
%ODQNHUW]�� ³((*� SRWHQWLDOV� SUHGLFW� XSFRPLQJ� HPHUJHQF\� EUDNLQJV�

during simulated driving´, in Journal of Neural Engineering, vol. 8, no. 
5, pp. 1±11, 2011. 

[9] H.H. Kornhuber  and L. Deecke, ³Changes in the brain potential 
in voluntary movements and passive movements in man: readiness 
potentials and reafferent potentials�´ in PflugersArch.Gesamte Physiol. 
MenschenTiere, 1965, vol. 284, pp. 1±17. 

[10] B. Libet, C.A. Gleason, E. W. Wright, and D.K. Pearl, ³Time of 
conscious intention to act in relation to onset of cerebral activity 
(readiness-potential) �´ Brain, 1983, vol. 106, pp. 623±642. 

[11] B. Libet, E.W. Wright, and C. A. Gleason, ³Readiness-potentials 
preceding unrestricted spontaneoXV¶ vs. pre-planned voluntary acts��´ 
in Electroencephalography and Clinical Neurophysiology , 1982, vol. 
54, pp. 322±335 

[12] '��0F)DUODQG��/��0F&DQH��6��'DYLG��DQG�-��:ROSDZ��³6SDWLDO�ILOWHU�
selection for EEG-EDVHG�FRPPXQLFDWLRQ�´�in Electroencephalography 
and Clinical Neurophysiology, 1997, vol. 103, no. 3, pp. 386±394,  

[13] R. O. Duda, P. E. Hart, and D. G. Stork, ³Pattern Classification, 2nd 
ed.��´ in  New York: Wiley, 2001. 

FPR 

T
P

R
 


