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Abstract— Posture changes initiate a dynamic physiological 

response that can be used as an indicator of the overall health 

status. We introduce an inconspicuous mobile wellness 

monitoring system (imWell) that continuously assesses the 

dynamic physiological response to posture transitions during 

activities of daily living. We use Zephyr BioHarness 3 

physiological monitor that continually reports heart activity and 

physical activity via Bluetooth to a personal device. The personal 

device processes all the data in real-time, recognizes posture 

transitions from accelerometer data, characterizes dynamic heart 

response to posture changes, annotates, logs, and uploads heart 

activity data to our mHealth server. In this paper we present 

algorithms for detection of posture transitions and heart activity 

characterization during a sit-to-stand transition. The proposed 

system was tested on seven healthy subjects performing a 

predefined protocol. The total average and standard deviation for 

sit-to-stand transition time is 2.7±0.69 s, resulting in the change 

of heart rate of 27.369.30 bpm (from 63.39.02 bpm to 

90.6610.09 bpm).  

I. INTRODUCTION 

Cardiovascular diseases represent the leading cause of 
death in the United States. The current practices in 
monitoring health status are expensive, often insufficient, 
and limited to monitoring in healthcare facilities. Patients 
usually consult cardiologists only after experiencing first 
symptoms of deteriorating cardiac status. Cardiologists 
usually administer exercise stress test to assess cardiac 
status. Standard stress tests are bike or treadmill exercise 
supervised by a doctor or a trained technician to determine 
the level of exercise a patient can tolerate. The tests are 
usually followed by prescribed therapeutic lifestyle changes 
including modification of diet and development of an 
exercise program with a follow-up after several months. 
However, the clinicians do not have tools to assess the 
patients’ progress and their compliance to the prescribed 
therapies. Patients and healthy users lack tools to monitor 
their own cardiac status and to manage healthy lifestyle.  
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Emergence and proliferation of lightweight and wearable 
physiological sensors enable the design of digital assistants 
that are capable of continual sensing and processing of 
cardiac activity and physical activity. A number of new 
consumer-grade devices for health and wellness monitoring 
has been introduced [1], [2]. Examples include pedometers 
that count number of steps and calories, and more 
sophisticated devices, such as heart and metabolic monitors. 
On the other side, an increasing number of users actively 
monitor their own health and fitness status [3]. The 
availability of affordable wearable devices and their 
consumer acceptance create new opportunities for individual 
users and healthcare professionals.  

Posture changes, such as transitions from sitting to 
standing, induce a physiological response that can be used to 
characterize fitness status of the user. Figure 1(b) shows 
heart rate recorded during a posture transition from sitting to 
standing for a healthy subject (blue line) and a subject with 
cardiac condition (red line) The heart rate in the healthy 
subject quickly increases as a response to the physical 
activity and then returns to a level  that corresponds to the 
new homeostasis.  

We hypothesize that characterizing this dynamic 
response, including a change in the heart rate and time to 
reach the maximum, can be used to indicate the subject’s 
cardiac status and overall wellness. Long term monitoring 
of cardiac health and physical activity during activities of 
daily living can provide indication of short term and long 
term changes of cardiac status and fitness. The goal of this 
project is to develop an inconspicuous wearable cardiac and 
wellness assistant called imWell (inconspicuous mobile 
Wellness) for efficient unobtrusive monitoring of physical 
activity, cardiac health, and overall physical wellness.  

The imWell system continually records interbeat intervals 
and processes accelerometer data to recognize posture 
transitions (Section III.A). For detected sit-to-stand posture 
transitions the system characterizes dynamic heart response 
by extracting transition timestamp, duration, heart rate before 
and after transition, and the time needed to reach the 
maximum heart rate from the beginning of the transition 
(Section 0). This way we treat each sit-to-stand posture 
change, which happens dozens of times per day, as a mini 
“exercise test”. Analyzing the results of these tests over long 
period of time, could be used to assess cardiac status and 
fitness.  
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Figure 1. Modeling change of heart activity induced by transition from 

sitting to standing 

 

Similar to a personal digital assistant that helps 
individuals manage day-to-day data needs, the imWell system 
serves as a personal assistant targeted to help individuals 
manage their cardiac health and physical wellness. Such a 
system can benefit: (a) healthy subjects, allowing them to 
track and manage the overall cardiac health status and 
physical fitness over long periods of time, (b) cardiac 
rehabilitation patients, allowing them to monitor and guide 
their rehabilitation and detect early deterioration of cardiac 
status; and (c) physicians and healthcare professional, 
allowing them to monitor patient’s cardiac health status and 
to verify their compliance to prescribed lifestyle changes and 
exercises. 

II. RELATED WORK 

Recognition and quantification of human activities using 
small wearable sensors during activities of daily living has 
been increasingly used in many applications. Automatic 
activity recognition and quantification systems that utilize 
inertial sensors are proposed for long-term health and fitness 
monitoring [4], [5], assessing of mobility in elderly and 
people with Parkinson’s disease [6]–[8], automatic fall 
detection [9], [10], and rehabilitation [11]. Approaches for 
automatic activity recognition used by researchers vary in 
number, type, and placement of utilized sensors, as well as in 
processing of recorded signals. While some researchers used 
multiple sensors for automatic activity recognition [12]–[14] 
increasing number of projects use a single inertial sensor 
[15]–[18] usually placed on the chest.   

One of the most challenging tasks in automatic activity 
recognition is detection and differentiation of posture 
transitions sit-to-stand and stand-to-sit. A number of 
researchers monitored angle of trunk tilt to detect possible 
posture changes by detecting situations when the angle 
exceeds certain threshold [15], [17]–[19]. While similar 

approaches for detection of possible posture transition are 
used, researchers used significantly different approaches in 
order to differentiate aforementioned transitions. Godfrey et 
al. [18] used vertical velocity, Fleury et al. [19] used 
wavelet-based pattern recognition on accelerometer data and 
tilt angle, while Fuentes at al. [17] used angle and forward 
and vertical acceleration. 

III. METHODS 

Our system relies on physiological monitor Zephyr 
BioHarness 3 to capture both inertial and physiological data 
(acceleration and RR-intervals). The monitor is placed in a 
chest belt worn by the user and communicates the data via 
Bluetooth to a personal device. The personal device (a) 
processes the signals to detect and timestamp transitions 
using data from inertial sensors, (b) extracts, characterizes, 
and records dynamic heart response to sit-to-stand 
transitions, and (c) uploads the records to a mHealth server 
[20].  

A. Posture Transition Detection 

Figure 1(a) shows a user during a transition from seating 
to standing and orientation of the Zephyr’s inertial sensor, 
with vertical axis (x), lateral (y), and sagittal (z). The Zephyr 
monitor is mounted in side strap located under subject’s left 
arm. The Zephyr’s inertial sensor samples and reports 
acceleration components Ax, Ay, and Az with the sampling 
frequency of 50 Hz. When the user is standing still or seating 
in the upright position we should observe Ax= -1g, Ay=Az=0, 
where the g is the Earth gravitation (9.81 m/s

2
).  

The first step in identifying possible posture transitions is 
to detect a change in the upper body angle relative to the 

upright position, , and a change in the acceleration vector 
magnitude, AccMag. The upper body angle is calculated as 

follows: =arctan(Az/Ax), where =0 degrees in the upright 
position as shown in Figure 1(a). It has a characteristic 
signature during posture transitions sit-to-stand and 
stand-to-sit. Figure 3(b) shows the angle during a sit-to-stand 
transition. We can locate 3 characteristic points in the angle 
signature – two purple circles mark the beginning 
(BeginTransition) and the end of the transition 
(EndTransition), and purple diamond marks the angle peak 
(AnglePeak).  

To identify a possible posture transition we search for a 
segment where the angle rises above a certain threshold. 

However, the angle  may include offsets caused by 
imperfect monitor placement and monitor’s movements 
relative to the body. To eliminate the impact of the offsets 

we calculate the standard deviation of the angle  on a 

sliding window of 1 second, stdev(), and use it to locate 
possible posture transitions. This signal is searched for 
maximums in segments that are above a certain threshold. 
Once we locate candidate segments we search for three 
characteristic points in the original angle (BeginTransition, 
AnglePeak, EndTransition).  

To estimate the level of physical activity we calculate the 
standard deviation of the acceleration vector magnitude on a 
sliding window of 1 second, stdev(AccMag). The 
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stdev(AccMag) is used to distinguish between posture 
transitions and motion artifacts such as leaning 
forward/backward/sideways in a chair. If the maximum 
stdev(AccMag) in a candidate segment is higher than a 
certain threshold, we mark this segment as a true transition. 
In true transition segments, we search the acceleration vector 
magnitude for two characteristic points, marked by blue 
circles in Figure 2(b), representing the maximum and the 
minimum (AccMagMax, AccMagMin).  

 sit2stand = 0 

 if (Time(AccMagMax) < Time(AccMagMin)) 

  sit2stand++  

else  
  sit2stand-- 

 if ((Time(AccMagMax) – Time(BeginTransition)) < 
(Time(EndTransition) – Time(AccMagMax))) 
  sit2stand++  

else  
  sit2stand-- 

 if(Time(AccMagMax) < Time(AnglePeak)) 
  sit2stand++  

else  
  sit2stand-- 

 if (sit2stand > 0) Transition=Sit-To-Stand 

else  
  Transition=Stand-To-Sit 

Figure 2. Algorithm for determining type of posture transition. 

 

The next step is to determine the type of the posture 
transition. In order to distinguish between the sit-to-stand 
and the stand-to-sit transitions, we employ multiple criteria 
that consider ordering of the characteristic points in time. 
The type of the transition is determined by a voting system 
described in Figure 2.  

B. Dynamic Heart Response 

Heart activity is continually recorded. In addition, 
dynamic heart response to a sit-to-stand posture transition is 
characterized in near real-time. The characterization is 
performed once the transition is detected and involves 
determining characteristic points as shown in Figure 1(b): 
(i) heart rate at the beginning of posture transition (HRb), 
(ii) the maximum heart rate after the transition is performed 
(HRa), and (iii) timestamp of the maximum heart rate. From 
these parameters we calculate the heart rate difference 
(HRdiff) and the time needed to reach the maximum heart rate 
from the beginning of the transition (THRMAX). To find HRa, 
we search for the maximum heart rate in a time window of 
13 seconds after EndTransition. If it is detected at the end of 
this window, we continue the search for the maximum 
beyond this point in time, until the heart rate starts 
decreasing.  

For each sit-to-stand transition we record the following 
parameters: (a) Time(BeginTransition), (b) TTransition = 
Time(EndTransition)-Time(BeginTranstion), (c) HRa, HRb, 
HRdiff, (d) THRMAX, (e) TSIT, and (f) TSTAND, where TSIT is the 
duration of seating before the transition, and TSTAND is 
duration of standing still after the transition. TSIT and TSTAND 
can help further characterize posture transitions: e.g., in 
analysis we would consider only transitions for which TSIT is 
longer than a certain time period (e.g., 60 seconds) and 
TSTAND is longer than THRMAX.   

IV. EXPERIMENTAL SETUP 

We record signals during a series of cued posture 
transitions driven by our custom program [21]. The protocol 
includes (1) Quite sitting for 5 min, (2) Stand still for 30 sec, 
(3) Quite sitting for 2 min, (4) Stand still for 30 sec, 
(4) Sitting & working on computer for 1 min, (5) Walking 
for 30 sec, (6) Sitting and working on computer for 1 min, 
(7) Walking for 30 sec, (8) Sitting and working on computer 
for 1 min, (9) Walking for 30 sec, and (10) Sitting and 
working on computer for 1 min. 

In addition, we record videos of experiments using the 
custom program that captures video and synchronizes with 
other measurements and the cues. The experiments with 
multiple participants were conducted in the Real-time 
Physiological Monitoring Lab [21] and Autonomous 
Tracking Optical Measurement (ATOM) Lab. The ATOM 
lab allows accurate tracking of reflective markers using 33 
Vicon T40 series IR cameras [22].  

Our algorithms for detection and characterization of 
posture transitions rely exclusively on the data from the 
Zephyr monitor, and we use the Vicon system only for 
algorithms verification. The experiments in the ATOM lab 
allow us to accurately capture body movements during 
posture transitions and thus precisely determine the 
beginning and the end of each posture transition. The users 
wear the Zephyr BioHarness monitor and strategically placed 
reflective markers. The Vicon system records the absolute 
position of each marker with millimeter precision every 20 
ms.  
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Figure 3. An example of physiological response during transition from 

sitting to standing: a) real-time heart rate calculated from RR intervals and 

hip position during transition; b) angle and magnitude calculated from 

accelerometer signals and hip position during transition. 

 



  

V. RESULTS, DISCUSSION, AND CONCLUSION 

The inertial and heart activity data are collected on 7 
healthy participants who performed the protocol described in 
the previous section. To verify accuracy of posture detection 
algorithm we compare the transitions reported by the 
program with actual transitions from the protocol and 
absolute positions and timing recorded using the Vicon 
system. We found that the proposed algorithm performs 
flawlessly recognizing correctly all sit-to-stand and 
stand-to-sit transitions correctly.  

Table 1 shows the average and the standard deviation of 
a subset of parameters characterizing dynamic heart response 
to sit-to-stand transitions in the protocol for all subjects. The 
total averages and standards deviation for all subjects are as 
follow: TTransition=2.7±0.69 s, HRdiff=27.36±9.30 bpm, 
HRb=63.30±9.02 bpm, HRa=90.66±10.09 bpm. The results 
show a significant change of heart rate (HRdiff) for each 
subject indicating potential of the proposed parameters in 
characterization sit-to-stand transition. 

Table 1. The average and the standard deviation of a subset of parameters 

characterizing dynamic heart response to sit-to-stand transitions for 7 

subjects (S1-S7). 

Subject TTransition [s] HRb [bpm] HRdiff [bpm] THRMAX [s] 

S1 2.97±0.46 66.25±5.36 36.75±5.01 11.90±2.39 

S2 2.73±0.63 81.2±4.82 18.79±4.41 8.99±2.08 

S3 2.32±0.48 59.18±5.55 37.23±5.44 13.64±2.46 

S4 1.99±0.74 53.66±4.23 32.73±6.33 12.16±3.62 

S5 2.57±0.43 58.78±0.69 25.00±4.48 13.05±2.49 

S6 2.74±0.47 61.12±2.53 26.51±3.53 9.22±4.58 

S7 3.61±0.50 62.90±1.73 14.48±3.66 14.01±2.58 

This paper’s contributions are as follows. First, we 
developed algorithms that reliably detect posture transitions 
by processing data from a single 3D accelerometer built-in in 
a commercially available physiological monitor. Next, we 
proposed parameters for characterization of dynamic heart 
response to sit-to-stand transitions, and developed algorithms 
for their extraction. Finally, we implemented and 
successfully tested the imWell system on seven participants 
during structured experiments.  

Whereas the goal of this paper was to develop the 
enabling technology for unobtrusive capturing of heart 
dynamic response to posture transitions, further research is 
needed to develop methods to assess cardiac status and 
fitness using the proposed parameter and to provide 
feedback and guidance to the users.  
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