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Abstract— Breast Cancer is still a serious health threat
to women, both physically and psychologically. Fortunately,
treatments involving complete breast removal are rarely needed
today, as better treatment options are available. Mammography
can show changes in the breast up to two years before a physi-
cian can feel them. Computer-aided detection and diagnosis is
considered to be one of the most promising approaches that may
improve the efficiency of mammography. Furthermore, there is
a strong correlation between the presence of calcifications and
the occurrence of breast cancer.

In this paper we present a new technique to detect cal-
cifications in mammogram images. The main objective is to
support radiologists with automatic detection methods applied
to medical images. Motivated by the fact that calcifications,
when compared to the rest of the image, exhibit irregular
characteristics, a technique based on Bayesian surprise is used.

Tests were performed using INBreast, a recent fully anno-
tated database, composed of full field digital mammograms.
Comparison both with a recently proposed state of the art
method and other common image techniques showed the
superiority of our method. False positives are, however, still
an issue and further studies focused on their reduction while
maintaining a high sensitivity are planned.

I. INTRODUCTION

Breast cancer is any form of malignant tumour which
develops from breast cells. It is the most common cancer
in women worldwide, and the leading cause of death from
cancer in women, especially those between 40 and 55 years
of age [1]. The only widely accepted imaging method used
for routine breast cancer screening is mammography. Screen-
ing mammography is performed in asymptomatic population
to detect early signs of breast cancer such as masses, cal-
cifications, bilateral asymmetry and architectural distortion.
Mammography reading is performed by radiologists who
visually inspect mammograms. This is not an easy task and
radiologists may get easily worn-out, missing vital clues
while studying scans. For the calcifications case, they may
be missed when they are covered by fundamental tissues
of breast. Also, the location of calcifications in a region
with a dense background is challenging [2]. In the light
of the difficulties involved in manual screening, the search
for automated screening of mammograms or computer aided
detection and diagnosis (CAD) of breast cancer has been
encouraged [1].
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In this paper we address this need by proposing a Bayesian
Surprise method for detection of calcifications in mammo-
gram images.

II. RELATED WORK

The literature on calcification detection in mammograms
is extremely extensive. Several review papers have already
been published, from which we highlight [2], [3], [4], [5].
Here, only some selected recent works are reviewed.

A deep learning technique is used in [6]. After a local
peak detection scheme, patches around the detected regions
are manually classified as containing or not containing cal-
cifications. A Discriminative Restricted Boltzmann Machine
is then used to automatically learn calcification morphology
and consequently classify new patches. Results using 9-fold
cross validation on a private database of 33 mammograms
reached an area under the ROC curve of 0.83.

Zhang et al. [7] propose a mathematical morphology and
support vector machine (SVM) method. First, the contrast
in the original mammogram is improved by gamma cor-
rection and two structural elements are used to enhance
the calcifications. Next, the potential regions are extracted
using a dual-threshold technique. Finally, an SVM classifier
is used to reduce the number of false positives (FPs). The
performance of the proposed method is evaluated using the
MIAS database. The experimental results achieved a true
positive rate of 94.85%, a FP rate of 7.82% and 0.53 FP
calcifications per normal mammogram without calcifications.

Perhaps the most similar works to the one presented here
are those that use novelty detection. The approach of Rose [8]
is motivated by the fact that signs indicative of breast cancer
are not found in pathology-free mammograms. The approach
requires a model of what normal mammograms look like.
Rose’s thesis [8] presents two generative statistical models.
The first treats mammographic appearance as a stationary
texture. The second models the appearance of entire mammo-
grams. Results in simulated calcifications achieved an area
under the ROC curve of 0.92. The area under the ROC
curve for images with simulated masses and calcifications
was 0.75. When testing in images with real findings, the
area dropped to 0.56 for images with calcifications only and
to 0.53 for images with both masses and calcifications.

Concerning commercially available systems, a collection
of selected independent assessments is presented in Table I.
Differences in published results may be due to several
factors, including system version, database and definitions
used for True Positives (TPs), FPs and False Negatives
(FNs). Baum et al. [9], considered as TP, only the automatic
detections consistent with the histology result of a carcinoma,
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TABLE I: Independent evaluation of commercially available
systems.

System Reference Year Sensitivity (%) FPr

ImageChecker [9] 2002 89 0.35
[10] 2005 40 2.00

SecondLook [11] 2005 95 0.65
[12] 2013 49 0.22

whereas automatic marks in other areas were counted as FP.
Likewise, only unmarked proven carcinomas were consid-
ered as FN. The results presented in [10] were obtained by
using images with amorphous calcifications. Brem et al. [11]
use cancer cases to compute sensitivity and normal images to
calculate the FPr. In [12], only images with benign findings
were used to calculate the FPr. Sensitivity was calculated
by using both images with benign and malign findings. An
image was considered as being correctly identified if at least
one automatic detection was located within the ground truth
region of the breast cancer, as opposed to the typical way
of computing the True Positives (TPs), where all automatic
detections are taken into consideration.

III. METHOLODOGY FOR CALCIFICATION
DETECTION

The surprise caused by an observation is defined in a
Bayesian sense as the change it brings to an observer’s prior
beliefs with respect to the phenomenon under considera-
tion [13]. It can be mathematically defined as follows [14]:
given a prior distribution P(M) over a (discrete) space of
models M describing a phenomenon, and the posterior
distribution P(M|D) after new data D is obtained for this
phenomenon through an observation, the surprise incurred
by D relative to the space M is given by the Kullback-
Leibler divergence (K) between the prior and the posterior
distribution,

S(D,M ) = K(P(M)||P(M|D)) = ∑
M∈M

P(M)log
P(M)

P(M|D)
.

(1)
Bayesian surprise can be used for images to explain

the saliency of regions that, compared to the rest of the
image, exhibit irregular characteristics [13]. This is particu-
larly interesting for calcification detection since they usually
correspond to bright spots in the mammogram image. The
visual context of the region implies a prior distribution P(M)
over the model space before the region is observed. After the
region is observed, a posterior distribution P(M|D) is formed,
where D is the data acquired from the observation of the
region. The surprise incurred by D relative to the space M
is then given by (1) [13]. This interpretation is demonstrated
in Fig. 1, where the area surrounding a square region serves
as its context.

The methodology for applying this technique to calcifica-
tion detection is:

• for each patch of the image

Fig. 1: Spatial interpretation of surprise for two regions (red
squares) and their respective context (frames between red
and green squares). Intensity distributions are also shown.

– compute the surprise induced by the patch in rela-
tion to its neighbourhood
∗ if the surprise value exceeds a threshold
· consider the region as a calcification

The technique is repeated in a set of 10 scales, by extracting
patches of sizes ranging from 12× 12 to 372× 372 pixels.
The context region was defined as the square frame having
the same area as the patch. In order to make the process
less computationally expensive, instead of using a dense
grid, patches with 25% overlap were extracted. As there are,
generally, more small calcifications than larger ones, surprise
threshold values were set according to a linear relationship:
Surpth = m×Patchwidth+b. Parameters were experimentally
set to m = 30.5 and b = 178. If, for a particular image,
the number of detected calcifications exceeds 300, b is
iteratively increased by 100 until the point when fewer than
300 calcifications are detected.

A. False Positive reduction

The above described detection technique tends to return a
high number of FPs. To reduce the number of FP detections,
a second step is performed, where some simple features are
initially extracted and used in a classification algorithm. The
feature vector of size 8 consists of the following charac-
teristics: intensity value of the image at the detected point;
standard deviation, minimum value, 25th percentile, median
value, mean value, 75th percentile and the maximum value of
the image intensities in the 21×21 patch around the detected
value. An SVM with the Radial Basis Function kernel was
trained in randomly selected subset containing 75% of the
images in the dataset. This process is repeated 40 times in
order to achieve more stable results.

IV. EVALUATION

Most of the evaluation methodologies individually look
at each lesion in the ground-truth (GT) and find a corre-
sponding lesion on the detection results. There is, however,
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a significant drawback with this approach, since it does not
force a one-to-one relationship and several detected regions
may be wrongly associated to the same GT lesion. Here, the
approach in [15] is followed. The main steps are as follows:
• Dissimilarity Matrix computation: calculation of all the

costs between the GT findings and the detected regions;
• Optimal assignment calculation: assignment of exactly

one GT region to one and only one detected region in
such a way that the total cost of the assignment is min-
imized (in the current implementation, the Hungarian
Algorithm [16] is used).

For the calcification detection case, as there are small
structures, they can be approximated by the corresponding
centroid. In this way, the most natural dissimilarity metric
to use is the distance. A saturation threshold is then applied
to the dissimilarity matrix in order to minimize an incorrect
assignment [15].

After the optimal assignment calculation, the number of
FPs is automatically determined by observing the detected
regions with no corresponding GT region. When dealing with
clusters, a final stage is added where the FP detections are
checked to see if they fall inside the GT cluster region. If
they do, they are no longer considered FPs. The missed
detection cases are assessed by setting an upper threshold
in the allowed dissimilarity value.

V. RESULTS

The experiments presented in this section are made using
the INBreast database [15]. All images were automatically
pre-processed so that the nipple is facing the right side of
the image; images have been automatically cropped in order
to include the breast area only; and pectoral muscle has been
removed. Images with BI-RADS class 1 have been manually
screened out, resulting in a total of 343 mammograms to be
analysed. Calcifications have areas ranging from 1 pixel2 to
more than 20 000 pixel2. For comparison with our proposed
Bayesian surprise detection method, other techniques were
tested:

Fixed threshold: As calcifications are usually brighter than
the remaining breast tissue, a first naive approach is to
determine a fixed value (threshold) and classify all image
pixels with intensity above that value as suspicious. The
problem resides in the determination of a unique robust
threshold value that works for all the images.

Outlier detection: Instead of using the same threshold
for all images, it can be adjusted individually for each
image. In this technique, all points with intensity higher
than q3 + 1.5× (q3 − q1) where q1 and q3 are the 25th

and 75th percentiles, are considered as outliers and thus as
calcifications. The value 1.5 corresponds to approximately
99.3% coverage if the data (i.e. pixel intensities) are normally
distributed [17].

Mathematical morphology: For comparison with the state
of the art, the technique of Zhang et al. [7] based on
mathematical morphology was reimplemented. The FP re-
duction part was not performed since, as will be shown in

the experimental section, this method has a low sensitivity.
Reducing the FPs would decrease the sensitivity even more.

From Table II it can be seen that the method with the worst
sensitivity is the Fixed threshold, followed by Mathematical
morphology, Outlier detection and the highest sensitivity
is achieved with the Bayesian surprise. Concerning the
FPs, the method with the worst behaviour is Mathematical
morphology, followed by Fixed threshold, Bayesian surprise
and Outlier detection.

TABLE II: Calcification detection results

Method Sensitivity (%) FP
Fixed threshold 34.5 164

Outlier detection 45.8 60
Mathematical morphology 40.3 225

Bayesian surprise 60.3 108

A comparative plot of the performances in several oper-
ating points can be seen in Fig. 2. The different behaviours
were accessed by: (1) in the Fixed threshold method, the
threshold was varied between 1.0 and 0.8; (2) for the Outlier
detection technique the computed individual threshold was
varied by adding a constant between −0.50 and 0.50; (3)
the Mathematical morphology method has two parameters,
α and β which were varied in the interval between 0.0 and
1.0; (4) finally, in the Bayesian surprise, the parameter b
was changed between −2000 and 2000. The curves show
that Bayesian surprise has a poor performance for small
sensitivity values but it rapidly performs better than all
the other tested methods as sensitivity increases. Illustrative
examples are presented in Fig. 3.

Fig. 2: Comparative plot of the performances of the detec-
tion methods. Circles correspond to the operating points in
Table II.

To test the FP reduction, an “over-detection” was first
performed leading to a Sensitivity of 83.9% with an average
number of 355 FP detections per image. After the reduction
of FPs, the sensitivity of the Bayesian surprise method
decreased to 48.8% (standard deviation = 0.143) and FP to
87 (standard deviation = 46). Some examples are shown in
Fig. 4.
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GT Outlier detection Bayesian surprise

Fig. 3: Examples of Calcification detection. Green dots
correspond to TPs, yellow to FPs and red to FNs.

Over-detection After FP reduction

Fig. 4: Examples of Calcification detection with FP reduc-
tion. Green dots correspond to TPs, yellow to FPs and red
to FNs.

Although a direct comparison with the results in Table I
is not possible, due to differences in the databases, GT spec-
ification methodology, evaluation technique, etc., the results
for the Bayesian Surprise method compare well in terms of
sensitivity with the commercially available approaches. As
illustrated with the examples of Fig. 4, the number of FPs
for the Bayesian Surprise method is overestimated. This is
a direct consequence of the sparse sampling. A dense grid
would generate connected areas and thus reduce the number
of FP. Other techniques for FP reduction that do not have
such a strong impact in the sensitivity will be tested in the
future.

VI. CONCLUSIONS

A methodology not yet used for calcification detection is
suggested in the present work. Results, when compared with
other state of the approaches, shown a high sensitivity. This
comes at the cost of a large amount of false positives. False
positive reduction is one of the envisioned future works.

Another contribution of this paper is to provide baseline
detection results over the INBreast database. To the best of
our knowledge, no other work has yet been made on the de-
tection of calcifications in this database. Future proposals can

thus be validated by comparison with the results presented
here.
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