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Abstract

Despite its reliable diagnosis, schizophrenia lacks an objective diagnostic test or a validated 

biomarker, which prevents a better understanding of this disorder. Structural magnetic resonance 

imaging (sMRI) has been vastly explored to find consistent abnormality patterns of gray matter 

concentration (GMC) in schizophrenia, yet we are far from having reached conclusive evidence. 

This paper presents a machine learning approach based on resampling techniques to find brain 

regions with consistent patterns of GMC differences between healthy controls and schizophrenia 

patients, these regions being detected by means of source-based morphometry. This work uses 

multi-site data from the Mind Clinical Imaging Consortium, which is composed of sMRI data 

from 124 controls and 110 patients. Our method achieves a better classification rate than other 

algorithms and detects regions with GMC differences between both groups that are consistent with 

several findings on the literature. In addition, the results obtained on data from multiple sites 

suggest that it may be possible to replicate these results on other datasets.

I. INTRODUCTION

Source-based morphometry (SBM) [1] is a technique that uses independent component 

analysis (ICA) [2] to obtain patterns of common gray matter concentration (GMC) variation 

among subjects. By applying SBM for schizophrenia studies, GMC deficits clustered into 

independent spatial regions can be identified. This approach has three main advantages. 

First, it performs a multivariate analysis of whole-brain data, so it does not restrict the 

analysis to a single region of interest. Second, it accounts for spatial dependencies between 

different brain locations, which are not taken into consideration by univariate analyses such 

as voxel-based morphometry (VBM) [3]. Third, it provides a better interpretation of the 

location of GMC variations than voxel-based approaches.

Up to date, only univariate tests on the SBM components loading coefficients have been 

used to identify those that are significantly associated to schizophrenia. This kind of 
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approaches do not take into account the multivariate contribution of these components to 

schizophrenia detection, which would better assess SBM’s discrimination capacity of 

healthy controls and schizophrenia patients. Furthermore, such a classification pursuit would 

benefit from a feature selection strategy, as only some of the SBM components are usually 

associated to schizophrenia.

While there is evidence that supports the reliability of SBM findings on spatial components 

that are associated to schizophrenia, doing a sparse selection of informative components is 

not a trivial task. The reason behind this is that this selection can change if some subjects are 

set aside of the analysis due to inter-subject variability. If data from multiple sites are 

incorporated in the analysis, then inter-site variability can further complicate the analysis.

The objective of this work is to find components that have a consistent contribution to the 

classification model and are less sensitive to inter-subject and inter-site variability. One way 

of doing so is by using resampling methods such as bagging [4], which trains an ensemble of 

classifiers with different data samples and gives a prediction based on a combination of 

them. If the contribution of the components to the classification task is evaluated across 

these data samples, it is possible to detect the most consistently informative ones.

II. DATA

A. Participants

This study uses structural magnetic resonance imaging (sMRI) data from the Mind Clinical 

Imaging Consortium study of schizophrenia from 234 subjects from 4 participating sites: 

Massachusetts General Hospital in Boston (MGH), University of Iowa (UI), University of 

Minnesota (UMN), and the University of New Mexico (UNM).

Schizophrenia was diagnosed according to DSM-IV criteria [5] on the basis of both a 

structured clinical interview and the review of the medical file. Healthy participants were 

screened to ensure they were free from DSM-IV Axis I psychiatric diagnosis and were also 

interviewed to determine that there was no history of psychosis in any first-degree relatives.

The analyzed data sample comprised 124 healthy controls (75 males; mean ± SD age, 32.27 

± 10.89 years) and 110 schizophrenia patients (82 males; mean ± SD age, 34.86 ± 10.99 

years).

B. Image Acquisition

SMRI data were acquired with either a Siemen’s 1.5-Tesla (MGH, UI, and UNM) or a 

Siemen’s 3-Tesla (UMN) MR scanners. The T1-weighted structural brain scans at each of 

the 4 sites were acquired with an in-plane resolution of 0.625 × 0.625 mm2, a slice thickness 

of 1.5 mm, and a flip angle of 7 degrees. MGH and UNM used a Siemen’s 1.5-Tesla scanner 

with repetition time (TR) = 12 ms, echo time (TE) = 4.76 ms, and number of excitations 

(NEX) = 1. UI used a GE 1.5-Tesla Genesis Signa scanner with TR = 20 ms, TE = 6 ms, and 

NEX = 3. UMN used a Siemen’s 3-Tesla scanner with TR = 2530 ms, inverse time (TI) = 

1100, TE = 3.79 ms, and NEX = 1.
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C. Preprocessing

Images were preprocessed using the methods presented in [6]. The SPM5 software package 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) was used to segment the T1-weighted 

images into gray matter, white matter and cerebrospinal fluid images, using unified 

segmentation [3].

Since age and gender affect GMC [1], [6], and SBM components as a consequence, these 

were regressed out of the images voxel-wise prior to further analysis. Then an isotropic 10 

mm full width at half maximum Gaussian filter was used to smooth the images. In order to 

overcome imaging heterogeneity of this multi-site dataset, we regressed out data collection 

site (N = 4 sites) from the loading coefficients of the SBM analysis.

III. METHODS

A. SBM Analysis

This approach identifies spatial maps with common patterns of GMC by applying ICA to the 

subjects’ GMC. This provides a decomposition of these volumes into a linear combination 

of spatial maps and loading coefficients. These coefficients, which weight each component 

in each subject’s data as depicted in Fig. 1, are used to examine component differences 

between controls (Ct) and patients (Sz).

A larger loading coefficient associated to a spatial pattern for an individual or group 

indicates that this component is more strongly weighted in the data for that individual or 

group. However, the interpretation of the loading coefficient difference depends on the 

spatial map of the component. If the spatial component is predominantly positive and if the 

loading coefficients are greater in Ct than in Sz, we infer that GMC is greater in Ct for the 

spatial component under consideration [7].

The SBM module of the GIFT Toolbox (http://mialab.mrn.org/software/gift/) was used to 

perform the ICA decompositions on the aggregated dataset. The number of components was 

set to 30 as in [1], [6], and we used ICASSO (http://research.ics.aalto.fi/ica/icasso/, 20 runs) 

to determine the stability of the components [6].

B. Bagged Support Vector Machine

The machine learning approach we propose to identify components associated to 

schizophrenia is based on a linear classifier, which is provided with N labeled training pairs 

of data . Here, GMC data of subject i is represented by the its S loading 

coefficients (S: number of sources or components) such that xi = [xi1, …, xiS]⊤, and yi 

indicates the subject class (−1 for Ct, +1 for Sz). The estimated class of an unseen example x 
by a linear classifier is defined by

(1)
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where w = [w1, …, wS] is the weight vector of the classifier, each element of w being 

associated to one component.

Here we provide a brief insight of the interpretation given to the components weights. For 

the sake of simplicity, let us assume that all of the components spatial maps are 

predominantly positive. If the loading coefficients of component d were greater in Sz than in 

Ct, then GMC would be greater for Sz for that component. Given the class representation of 

Ct (−1) and Sz (+1), wd would take a positive value. On the other hand, if loading 

coefficients of the same component were lower in Sz, then GMC would be lower for Sz too 

and wd would take a negative value. This gives a clear interpretation of the role of each 

component in the discriminant function defined on (1).

We use a support vector machine (SVM) [8] to train the linear classifier. The SVM, which 

was coded in MATLAB (http://www.mathworks.com) and solved using the MOSEK 

optimization toolbox (http://www.mosek.com), finds w and the bias term b in (1) by solving 

the following optimization problem:

(2)

Slack variables ξi in (2) allow errors in training data, ||w||p is an lp-norm regularization term 

that controls overfitting and C is a parameter that controls the tradeoff between the 

regularization and the training error terms.

The choice of norm p depends on the nature of the classification task. An l1-norm 

regularization enforces sparsity in w, making the weights associated to non-informative 

features equal to zero. Since the data dimensionality is significantly reduced from hundreds 

of thousands voxels to S components through SBM, an l1-norm regularization term is well-

suited to find informative components. Nonetheless, a selection of informative components 

cannot rely on an l1-norm SVM approach only, as its sparse selection can vary significantly 

if some subjects are set aside of the analysis due to the inherent inter-subject variability of 

the data. This problem can be solved to a certain extent by using a pool of diverse linear 

classifiers, as suggested by the starplots method proposed by [9]. However, our approach 

follows the rationale of the bagged-selection presented in [10], which looks for features with 

consistent weight patterns.

The way the ensemble of classifiers is constructed closely resembles that of bagging 

classifiers [4]. Each classifier is trained using a subset of M < N examples randomly 

sampled from the training data. However, unlike [4], the data is sampled with no 

replacement. The idea is to select those components that exhibit a high degree of sign 

consistency across the ensemble, disregarding those ones with unstable sign fluctuations or 

that are rarely selected by the pool of classifiers. The degree of sign consistency is defined 

by parameter r, which establishes a lower bound of the fraction of classifiers in which 

informative components weights should be consistently positive or negative.
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C. Experimental Setup

The classification accuracy rate obtained by bagged SVM was estimated using a leave-one-

out cross-validation (loo-CV) procedure. More specifically, 234 classifiers were trained by 

using the data from all subjects except one, each of them being tested on that left-out 

example. The fraction of correctly classified examples using this experimental setting 

defined the method’s accuracy rate.

There are also several parameters that need to be either fixed to a given value or selected 

using some validation procedure. These parameters are the number of classifiers of the 

ensemble (P), the number of examples drawn to train each of these classifiers (M), the sign 

consistency threshold of the components (r) and the SVM parameter C. The proposed 

approach did not seem to be sensitive to parameters P and M, which were fixed to 250 and 

80% of the available data, respectively. However, the sign consistency threshold defines the 

number of selected components, so it needs to be validated. Furthermore, C also plays an 

important role in determining the number of components to be selected, so it needs to be 

properly estimated. To do so, an inner loo-CV was ran inside each round of the loo-CV used 

to estimate the classification accuracy. In other words, at each round of the main loo-CV, a 

nested loo-CV selected the appropriate values of C and r for that specific round. C was 

picked from 3 logarithmically spaced points in the range [0.1, 1], while r was selected from 

the range [50%, 100%] in steps of 1%.

IV. RESULTS

A. Classification Accuracy

Table I shows the classification accuracy, sensitivity and specificity rates achieved by 

Bagged SVM. This table also shows the results obtained by a linear SVM with l1- and l2-

norm regularization terms, as well as for partial least squares (PLS1) [11] and random 

forests (RF2) [12]. PLS and RF were also implemented using MATLAB.

B. Relevant Components Statistics

The multivariate association of the components to schizophrenia was evaluated in terms of 

their weights mean and selection frequencies across CV rounds. Table II shows the 

components that achieved a selection frequency greater than or equal to 0.5 and the p-values 

associated to a two-sample t-test across Sz and Ct on their loading coefficients.

C. Components Loadings Directionality and Spatial Extent

Three out of the four listed components contain areas were GMC is greater on Ct than Sz, 

while the other one shows a reversed pattern. Table III also shows the set of brain regions 

spanned by these components, which are graphically depicted in Fig. 2.

1the parameter #factors ∈ [1, S/2] was selected on the inner CV
2trained with fixed parameters: #trees=250, 
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V. DISCUSSION AND CONCLUSIONS

To the best of our knowledge, this is the first work that performs classification of 

schizophrenia using GMC patterns obtained by SBM. In addition, the results obtained on 

data from multiple sites indicate that it may be possible to replicate these results on other 

datasets.

We present evidence that the effects of imaging heterogeneity due to multi-site acquisition 

are successfully dealt with our data analysis pipeline based on the accuracy rates obtained by 

different classifiers (Table I). Site differences can significantly deteriorate prediction 

capacity when working directly with GMC maps, potentially giving poor accuracy rates, as 

we discovered on preliminary analyses.

The reliability of Bagged SVM is supported by the results presented in Table I. It can be 

seen that applying a linear l1-norm SVM to the data is not beneficial, as its prediction 

accuracy is lower than that obtained by an l2-norm SVM. However, bagging significantly 

improves the performance of l1-norm SVM, making it surpass the one achieved by l2-norm 

SVM and PLS, which show equivalent performance. This reinforces the notion that 

resampling can reduce the effect of inter-subject variability of the data for feature selection 

if it is used appropriately on the analyzed domain. For instance, RF, which also apply 

resampling and perform feature selection, show a suboptimal performance.

Table II shows the components that were more informative for schizophrenia classification, 

along with the multivariate statistics retrieved from Bagging SVM and the results of two-

sample t-tests across Sz and Ct on their loading coefficients. Components 1, 2 and 4 are 

significantly associated to schizophrenia according to the univariate tests, which is not the 

case of component 3. This result suggests that the multivariate analysis performed by 

Bagging SVM is capable of detecting relevant components that would be rendered irrelevant 

to schizophrenia based on univariate tests. In fact, a similar component that covers the 

middle occipital gyrus is reported to be significant for schizophrenia on a very large data 

study [7].

Fig. 2 shows the spatial extent of the components, the labels of these regions being listed in 

Table III. Component 1 presents the largest GMC differences between Ct and Sz according 

to Bagging SVM and includes, among other regions, the superior temporal gyrus, which 

represents one of the most consistent structural abnormalities found on schizophrenia [13]. 

In addition, several of the regions identified by the VBM meta-analysis in [14] as having 

GM deficits in schizophrenia are detected in this analysis across components 1 and 2.

On the other hand, component 4 shows increased GM in Sz. This component covers the 

ventral tegmentum, which is responsible for dopamine production. Since most antipsychotic 

treatments tend to block receptors in the brain’s dopamine pathways, this may result in 

compensatory increases in GM in some brainstem regions [7], [15].
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Fig. 1. 
GMC images are concatenated for each subject. SBM decomposes the subject/voxel matrix 

into loading coefficients (mixing matrix) and a source matrix (spatial maps). The loading 

coefficients are unique for each subject and permit group comparisons.
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Fig. 2. 
Spatial maps of the top 4 components showing (Ct/Sz) group difference ranked by product 

of mean weight and selection frequency. All maps are thresholded at |z-score| > 3.5. The 

colorbars indicate the color mapping of the component weights.
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TABLE I

Classification Performance of Bagged SVM

Approach Class. Acc. Sens/Spec

RF 0.67 0.59/0.74

l1-norm SVM 0.68 0.61/0.73

l2-norm SVM 0.70 0.64/0.75

PLS 0.70 0.66/0.73

Bagged SVM 0.73 0.65/0.80
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TABLE II

Relevant Components Statistics

Component Number Mean Weight Selection Frequency t-test (p-value)

1 −0.64 0.98 1.50E-8

2 −0.44 0.79 4.42E-8

3 −0.23 0.97 0.01

4 0.26 0.50 9.09E-6
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TABLE III

Loadings Directionality and Components Regions

Component Number Loadings Directionality Brain Regions

1 Ct>Sz
Superior Temporal Gyrus

Inferior Frontal Gyrus
Insula

2 Ct>Sz
Superior Frontal Gyrus
Middle Frontal Gyrus
Medial Frontal Gyrus

3 Ct>Sz
Middle Occipital Gyrus

Calcarine Cortex
Lingual Gyrus

4 Sz>Ct Brainstem
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