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Abstract

A wheelchair user's activity and mobility level is an important indicator of his/her quality of life 

and health status. To assess the activity and mobility level, wheelchair maneuvering data must be 

captured and analyzed. Recently, the inertial sensors, such as accelerometers, have been used to 

collect wheelchair maneuvering data. However, these sensors are sensitive to noises, which can 

lead to inaccurate analysis results. In this study, we analyzed the characteristics of wheelchair 

maneuvering data and developed a novel machine-learning algorithm, which could classify 

wheelchair maneuvering data into a series of wheelchair maneuvers. The use of machine-learning 

techniques empowers our approach to tolerate noises by capturing the patterns of wheelchair 

maneuvers. Experimental results showed that the proposed algorithm could accurately classify 

wheelchair maneuvers into eight classes, i.e., stationary, linear acceleration/deceleration, linear 

constant speed, left/right turns, and left/right spot turns.1 The fine-grained analysis on wheelchair 

maneuvering data can depict a more comprehensive picture of wheelchair users' activity and 

mobility levels, and enable the quantitative analysis of their quality of life and health status.

I. Introduction

Information regarding wheelchair maneuvering characteristics is essential for revealing 

wheelchair users' activity and mobility level [1], which is an important indicator of their 

quality of life and health status [2, 3]. In addition, wheelchair maneuvering characteristics 

are critical for studying safety issues as wheelchair-related accidents frequently occur, and 

1The difference between the maneuvers of spot turns and maneuvers of left/right turns is that spot turns rotate the wheelchair without 
changing its location while left/right turns change the location of the wheelchair along an arc.
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some may lead to serious injuries [4]. Despite its importance, research on capturing and 

analyzing wheelchair maneuvering characteristics is still a relatively under-investigated area 

as there is only limited information on this topic [1, 5, 6].

Recently, the inertial sensors, such as accelerometers, have been used to collect wheelchair 

maneuvering data [7, 8]. The use of accelerometers is convenient due to the availability of 

commercial products, and also simplifies the experiment setup [7]. However, a big challenge 

associated with the use of accelerometers is that they are sensitive to noises. Even when an 

accelerometer is stationary, it still generates sensor readings due to the rotation of the earth, 

gravity, and/or other environmental noises. The current research uses low-pass filters to 

remove noises that have a frequency higher than a predefined cut-off threshold [7]. 

However, noises with a frequency lower than the cut-off threshold may still exist. As a 

result, the noises will make it difficult to even determine whether the wheelchair is 

stationary or moving [7].

In this study, we aim to address this challenge by developing a machine-learning algorithm, 

which can accurately classify wheelchair maneuvers, such as the idle state (i.e., stationary), 

accelerations/decelerations, left/right turns, etc. The use of machine learning techniques can 

counteract noises by capturing the patterns of wheelchair maneuvers. By distinguishing the 

maneuver of idle state from other non-idle maneuvers, we can measure a wheelchair user's 

activity (e.g., maximum continued maneuvering time, number of starts/stops, etc.) and 

mobility (e.g., active hours), which are the desired information studied in the current 

research [1-3, 7]. Besides the coarse-grained classification of the idle and non-idle 

maneuvers, our classification algorithm allows us to classify wheelchair maneuvers into 

eight classes, i.e., idle state, linear acceleration, linear deceleration, linear constant speed, 

left turn, right turn, spot turn to left, and spot turn to right. Such fine-grained analysis can 

depict a more comprehensive picture of wheelchair users' activity and mobility levels.

This study is an extension of our previous research, in which we constructed a mobile- and 

cloud-computing based (MC) system to capture wheelchair maneuvering data [9]. The 

accelerometer and gyroscope in a smartphone were used to capture wheelchair maneuvering 

data, which were then transmitted to the cloud for the subsequent data processing and 

storage. With the proposed classification algorithm, it becomes feasible to effectively 

analyze noisy sensor data from wheelchair users' day-to-day maneuvers, and quantify their 

activity and mobility levels to measure their quality of life and health status.

II. Methods

Unlike existing research, which extensively focuses on placing data loggers on the wheels of 

a wheelchair [1, 7, 8], our protocol only takes a single step, i.e., placing a smartphone on the 

armrest of a wheelchair to capture the maneuvering data. This is achieved by developing a 

smartphone app that controls the accelerometer and gyroscope in the smartphone [9]. 

Comparing with existing research, our approach largely simplifies the experiment setup. In 

addition, we also employed the cloud computing technique to store and process wheelchair 

maneuvering data. The combination of mobile and cloud computing significantly improves 

the efficiency of data collection and storage.
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A. Data Modeling and Noise Reduction

We model an instance of wheelchair maneuvering data as a 7-tuple vector:

(1)

including accelerometer (α) and gyroscope (g) data in three axes, and a time-stamp (t) 

denoting when the instance is recorded. As shown in Figure 1, an accelerometer can capture 

accelerations in three axes (i.e., x, y, and z) and a gyroscope can record angular speed of 

pitch, roll, and yaw.

As data captured by the accelerometer contains significant noises, we take two steps to 

reduce noises. First, we observed that the values of noises fluctuated within a certain range 

when the accelerometer was stationary. Hence, we average the sensor readings for the 

stationary period to obtain the averaged value Δ in axis d (d = x, y, or z). Δ is then used to 

shift the entire data set in axis d, i.e., deduct Δ from each data instance. Second, to further 

reduce noises, we use the Kalman filter [10], which is a well-known algorithm for filtering 

noises and generating precise estimates of the underlying system states.

B. K-Nearest Neighbor

Our proposed algorithm utilizes the k-nearest neighbor (KNN) algorithm, which is a widely 

used classification algorithm due to its simplicity and effectiveness [11, 12]. In KNN, a data 

vector is classified into a class based on the majority vote of its k nearest neighbors. This 

approach fits in our study because we can adjust the parameter k to mitigate the impact of 

noises. To measure the affinity to the neighbors, we use the Euclidean distance:

(2)

where Si (i = 1, 2, …, m) is a sample data vector and Tj (j = 1, 2, …, n) is a testing data 

vector. Both of them are 6-dimensional vectors because there are 6 elements (of 

accelerometer and gyroscope) defined in Equation (1). The timestamp t in Equation (1) is 

not considered by KNN because it is not related to wheelchair maneuvering behaviors. 

Instead, t is used for the subsequent activity and mobility analysis. Si
k denotes the k-th 

dimensional element in Si and Tj
k denotes the k-th dimensional element in Tj.

C. Two-Step Classification Algorithm

The two-step classification algorithm classifies wheelchair maneuvering activities into eight 

commonly used classes, namely, idle state (i.e., stationary), linear acceleration, linear 

deceleration, linear constant speed, left turn, right turn, spot turn to left, and spot turn to 

right. This algorithm was designed based on the characteristics of wheelchair maneuvering 

data. As shown in Figure 2, the gyroscope data of yaw can help us easily distinguish the 

turning maneuvers (e.g., left turns and right turns) from the linear ones (e.g., linear 

acceleration and deceleration). The turning maneuvers have significantly larger absolute 

yaw values than their linear counterparts. Hence, our algorithm employs a two-step strategy 
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to classify a maneuver. In the first step, it tries to determine whether the given maneuver is 

linear or turning. It then determines the exact maneuver in the second step. The advantage of 

this two-step strategy is that it can significantly reduce the chances of misclassifying linear 

maneuvers into turning ones and vice versa.

Figure 3 outlines the proposed two-step classification algorithm. The input to the algorithm 

is a data segment d representing a wheelchair maneuver. The segment d consists of a 

sequence of data vectors in a format defined in Equation (1). In Step 1, the function 

Project_Yaw projects the input data segment d into d1 (line 3 in Figure 3). Each vector in d1 

is a singleton ‹gy›, i.e., the yaw gyroscope data gy. The reasons for using only yaw data are 

two folds. First, Figure 2 shows that data of yaw demonstrates distinctive patterns on linear 

and turning maneuvers. Second, this study focused on indoor settings, in which the ground 

was flat. Theoretically, the angular speeds of pitch and roll should be 0 in such an 

environment. Hence, our algorithm only considers yaw gyroscope data to determine the 

linearity of the maneuver by running the KNN (line 4).

In Step 2, the algorithm first checks whether the maneuver has been identified to be linear 

(line 6). If it is linear, the input data segment d is projected into the linear format (line 7), 

i.e., ‹αy›. Here, αy is the acceleration on axis y, which is the wheelchair's maneuvering 

direction. Accelerations on axis x are not considered because linear maneuvers do not have 

significant movements on axis x, which is perpendicular to the moving direction. Similarly, 

the angular speeds are not considered in liner maneuvers as well.

If the maneuver is non-linear (line 8), the input data segment d is projected into the turning 

format (line 9), i.e., ‹αy, gy›. Here, we employ acceleration data on axis y and yaw gyroscope 

data to precisely distinguish spot turns from regular left/right turns. This is because spot 

turns have larger absolute yaw speeds (as shown in Figure 2), while they demonstrate 

different patterns on accelerations of axis y from the regular left/right turns. Finally, our 

algorithm uses KNN to determine the exact wheelchair maneuver (line 11).

III. Results

We conducted an experiment inside an academic building in the University of Central 

Oklahoma. The smartphone we used was a Samsung Galaxy S2 (GT-I9100) with Android 

OS 4.1 Jelly Bean. The built-in sensors, including accelerometer and gyroscope, were used 

to capture wheelchair maneuvering data. The wheelchair was an Invacare® power 

wheelchair.

We investigated four different K values for KNN used in our two-step algorithm, namely, K 

= 1, 3, 5, and 7. In KNN, each maneuver class was associated with 8 sample data vectors. 

Since the maneuvers were classified into 8 classes, the total number of sample data vectors 

was 64 in the sample space. When a testing data vector was provided, its class was 

determined by the majority of its K closest neighbors among the 64 vectors of sample data. 

Since raw sensor data contained significant noises, we did not use raw data in the 

experiments of classification. Instead, we conducted experiments on noise-reduced data 

processed with Kalman filter.
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Table I shows the experimental results. The columns include the value of K, maneuver type, 

the number of data vectors that were tested, and the accuracy. Our two-step classification 

algorithm achieved very high accuracy in classifying wheelchair maneuvers. It perfectly 

classified the idle and spot turn maneuvers (i.e., 100%). Hence, our algorithm can precisely 

determine whether the wheelchair is moving. When K = 3, the algorithm achieved the 

highest averaged accuracy, i.e., 96.16%.

IV. Discussion

The literature demonstrates that existing research attempted to depict an increasingly more 

comprehensive picture about wheelchair users' activity and mobility levels. The information 

studied evolved from the subjective self-reported questionnaires [13] to more objective 

maneuvering time and distance [5, 6], and later to the measurement of bouts, which refer to 

segments of continuous wheelchair movement [2, 7]. Our fine-grained analysis on 

wheelchair maneuvers enables us to perform these analyses effectively. As our classification 

algorithm can accurately classify wheelchair maneuvers (see Table I), we can easily 

distinguish the maneuver of idle state from other maneuvers. Plus, time-stamps are included 

in all the data instances from the accelerometer and the gyroscope. Hence, for the mobility 

level, we can measure the active hours by summing up the time spent on all non-idle 

maneuvers. For the activity level, the maximum continued maneuvering time can be 

determined by identifying the longest piece of data sequence sandwiched in between two 

consecutive idle states. Similarly, we can count the number of starts/stops and the number of 

bouts. By applying the trapezoidal rule or Simpson's rule [14] to accelerations, we can make 

more quantitative measurement on the activity level (such as the maximum continued 

maneuvering distance), and the mobility level (such as the total maneuvering distance, 

averaged speed, etc.).

In addition, the research area of indoor localization [15, 16] is related to our study. Indoor 

localization is especially important for wheelchair users because disability is often 

accompanied with impaired ability of spatial cognition [17]. However, existing indoor 

localization systems primarily target at healthy people. The localization is usually achieved 

through step detection and step length estimation [15, 16]. Unfortunately, wheelchair users 

do not possess such characteristics related to steps. The accelerations and decelerations of 

wheelchairs are instantaneous (usually less than 1 second). The subtle changes in maneuvers 

as well as the noises in maneuvering data compound the difficulty in determining the correct 

maneuvers. Our two-step classification algorithm overcame these challenges and achieved 

satisfactory precision in classifying wheelchair maneuvers as shown in Table I. As a result, 

our study may enrich research on indoor localization as well.

A. Study Limitation

Our experimental environment is basically a 2-D setting as the floor is flat without up and 

down variations. In the next step, we will conduct experiments in more complex indoor 

settings.
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V. Conclusion

In this study, we strived to characterize wheelchair maneuvering data to depict a 

comprehensive picture of wheelchair users' activity and mobility levels. As raw sensor data 

contained significant noises, we applied the well-known Kalman filter to reduce noises. 

Then, we developed a novel two-step classification algorithm to perform fine-grained 

analysis on wheelchair maneuvers. This algorithm was designed based on the characteristics 

of wheelchair maneuvering data, which demonstrated distinctive patterns on linear and 

turning maneuvers when the yaw angular speeds were considered. The first step of the 

algorithm tried to determine whether the given data segment was a linear or turning 

maneuver. Then, the second step of the algorithm determined the exact class of the 

maneuver. Experimental results showed that this two-step algorithm achieved high accuracy 

in classifying the wheelchair maneuvers even though noises still existed.

In the next step of our research, we will utilize the two-step classification algorithm to 

improve the precision of maneuvering distance measurements. First, we will employ this 

algorithm to identify wheelchair maneuvers. Then, we will calculate maneuvering distance 

for each of the maneuvers with a suitable approach. The individual distances will be finally 

summed up to obtain the overall distance. This approach will largely mitigate the 

accumulated errors that existing approaches suffer. Therefore, our approaches will be able to 

depict a more accurate and comprehensive picture of wheelchair users' activity and mobility 

levels.
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Figure 1. Three Axes of the Smartphone
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Figure 2. Yaw Gyroscope Data for Different Classes of Wheelchair Maneuvers
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Figure 3. Outline of the Two-Step Algorithm
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Table I
Experimental Results on the Two-Step Classification Algorithm

K Maneuver Types Num. of Vectors Accuracy (%)

K=1

Idle 136 100.00%

Linear acceleration 65 90.77%

Linear deceleration 53 98.11%

Linear constant speed 227 90.75%

Left turn 78 88.46%

Right turn 95 94.74%

Spot turn to left 73 100.00%

Spot turn to right 72 100.00%

Average 95.35%

K=3

Idle 136 100.00%

Linear acceleration 65 90.77%

Linear deceleration 53 96.23%

Linear constant speed 227 97.80%

Left turn 78 89.74%

Right turn 95 94.74%

Spot turn to left 73 100.00%

Spot turn to right 72 100.00%

Average 96.16%

K=5

Idle 136 100.00%

Linear acceleration 65 90.77%

Linear deceleration 53 94.34%

Linear constant speed 227 98.24%

Left turn 78 89.74%

Right turn 95 90.53%

Spot turn to left 73 100.00%

Spot turn to right 72 100.00%

Average 95.45%

K=7

Idle 136 100.00%

Linear acceleration 65 90.77%

Linear deceleration 53 83.02%

Linear constant speed 227 98.68%

Left turn 78 89.74%

Right turn 95 90.53%

Spot turn to left 73 100.00%

Spot turn to right 72 100.00%

Average 94.09%
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