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ABSTRACT

ON THE CHARACTERIZATION OF SINGLE-EVENT RELATED BRAIN ACTIVITY

FROM FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI)

MEASUREMENTS

By

Nafiseh Khoram

Master of Science in Mathematics

The goal of this study is to design a numerical procedure for calibrating the mathemat-
ical model that describes single-event related brain response when fMRI measurements
are given. This problem can be formulated as an inverse problem that falls in the cate-
gory of parameter identification of a dynamical system. We have analyzed this problem
mathematically and have established results pertaining to the sensitivity of the response
to the biophysiological parameters. From a numerical point of view, we have designed a
regularized iterative method equipped with Kalman filtering method to estimate these pa-
rameters from the knowledge of some fMRI measurements. The Newton component of the
proposed algorithm addresses the nonlinear aspect of the problem. The regularization pro-
cedure is used to ensure the stability of the algorithm. The de-noising procedure is incor-
porated to address the noise in the model. We have employed this method to estimate the
biophysiological parameters of the so-called Balloon model which is a dynamical system
that describes the hemodynamic brain responses. More specifically, we have performed a
numerical investigation using synthetic data tainted with various noise levels to assess the
performance of the proposed method. The obtained results illustrate the potential of the
proposed solution methodology to accurately and efficiently estimate the biophysiologi-
cal parameters. In addition, these results indicate that the proposed method outperforms
the Cubature Kalman Filter (CKF), a procedure that has been developed recently and is
considered to be one of the most successful parameter estimation techniques. Finally,
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using real fMRI measurements obtained from a finger tapping experiment conducted at
the Nationwide Childrens Hospital, Columbus, OH, we have calibrated the corresponding
Balloon model and have estimated its biophysiological parameters.
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Chapter 1

Introduction

The human brain is a network of about one trillion neurons with one thousand trillion
connections, making it one of the most complex systems in the universe. Mapping the
structure of the human brain is a daunting task. Indeed, tracing or analyzing these connec-
tions in an area of just one millimeter square of tissue can take years. Allowing researchers
and physicians to visualize the architecture of the brain is a recognized scientific need of
pressing importance since, as it is well-known, physical and psychological disorders can
be detected by studying the changes in the anatomy, physiology, and chemistry of the
brain. When the brain cannot effectively coordinate the billions of cells in the body, the
results can adversely affect many aspects of life. Scientists are continually learning more
about how the brain grows and works in healthy people, and how normal brain devel-
opment and function can go awry, leading to illnesses. Neurology has grown leaps and
bounds in recent times. In spite of this tremendous progress, very little is known about
the brain, as president Obama unveiled his proposal for a federal brain mapping project
earlier this year, he said about the brain: “There is this enormous mystery waiting to be
unlocked” [38].

One of the reasons the brain has been a mystery for so long is that it is encased in the
skull. Under ordinary circumstances, one does not have easy access to seeing the brain.
Being able to see into the human body took a big leap forward when Wilhelm Roentgen
discovered x-rays [34]. However, being encased by the skull, the brain and other soft
tissues were still unknown territory for physicians and physiologists. Nowadays, physi-
cians have a wide array of tools to understand this enigmatic organ, thanks to the inter-
disciplinary efforts made by science, engineering, and mathematics. Examples of these
imaging techniques include two-dimensional cross sections of the brain. These systems
allow static views of the brain. It also allows to make movies that show the dynamic of
the brain. The recent invention of fMRI, appear to be a powerful tool for providing three-
dimensional images of the brain which allows physicians to detect the activated regions
of the brain. This advancement open widely a new horizon of hope and possibilities for
detecting and diagnosing many disorders such as Alzheimer’s, depression, brain tumor,
and strokes. The applied mathematics can and should play an important role toward this
research journey for understanding brain activity.

Mathematics exploits current knowledge of the brain to provide a valuable tool for
understanding the brain. It helps to understand neuronal organization and transmission of
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signals (nerve conduction) between the brain and other parts of our nervous system. It
uses dynamical systems in an attempt to, for example, understand epilepsy and to predict
the start of seizures. Furthermore, mathematics provides modeling for various aspects of
the brain to understand how to map different parts of the brain to specific brain functions.

In this study, we consider an inverse problem arising in functional brain imaging. It
consists of identifying the parameters of the brain activation model from fMRI measure-
ments. fMRI is an MRI procedure that measures brain activity by detecting associated
changes in blood flow and produces 3D images of brain by detecting the Blood Oxygena-
tion Level Dependent (BOLD) signal [26]. Since the early 1990s, fMRI has attracted
widespread interest in basic and clinical research and patient care. fMRI is an essential
clinical tool to assess how risky brain surgeries or similar invasive treatments are for a
patient. This technique relies on the fact that cerebral blood flow (CBF) and cerebral
metabolic rate of oxygen (CMRO2) are coupled. When an area of the brain is in use,
blood flow to that region also increases which results in an increase in the blood oxygena-
tion level. In general, hemoglobin (Hb) is diamagnetic when oxygenated and paramagnetic
when deoxygenated [4]. The changes in deoxyhemoglobin level distorts the magnetic field
in the fMRI machine and creates a signal strong enough for the machine to pick up.

Recent fMRI studies have used some inversion methods, such as Dynamic Expectation
Maximization (DEM) [14], Cubature Kalman Filter (CKF) [1], Sequential Monte Carlo
(SMC) [11]. The results reported in [24] are very promising and tend to indicate that CKF
is currently one of the most successful methods. Nevertheless, as it is demonstrated in
Chapter 6, this method fails to determine accurately the biophysiological parameters in
the absence of a priori knowledge on the values of these parameters.

The main goal of our effort is to propose a new approach to invert (fit) models of cou-
pled dynamical systems. This method is based on a combination of Cubature Kalman
filtering (CKF) and a regularized Newton algorithm (RNA). The Newton component of
the proposed algorithm addresses the nonlinear aspect of the problem. The regularization
procedure is used to ensure the stability of the algorithm. The de-noising procedure is in-
corporated to address the noise in the model. The results reported in Chapter 6 demonstrate
the efficiency (cost-effectiveness and accuracy) of the proposed solution methodology, as
well as its stability and its robustness to the noise effect. Moreover, the results clearly
indicate the convergence of the proposed algorithm even when starting with blind initial
guesses.

The remainder of this manuscript is organized as follows. In chapter 2, we introduce
the concept of forward and inverse problems and their properties. In chapter 3, we state the
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mathematical model (the forward problem) that describes the changes in the physiological
properties of the brain (brain responses) to exogenous stimulus during brain activation.
We also formulate the parameter estimation problem (the inverse problem) that consists of
finding the biophysiological parameters of this model from the knowledge of fMRI mea-
surements. In Chapter 4, we present the obtained mathematical results on the sensitivity of
the brain responses to the sought-after biophysiological parameters. Chapter 5 is devoted
to the description of the features of the proposed inversion algorithm. In Chapter 6, we
assess the performance of the designed algorithm. We present the results of two sets of
numerical experiments with synthetic data. The first set corresponds to a Gaussian control
input, whereas the second one corresponds to an on-off control input. In Chapter 7, we
present model calibration results using real fMRI measurements corresponding to a finger
tapping experiment. Summary and concluding remarks are presented in the conclusion
section. Finally, a brief description on how fMRI provides images of the brain is included,
for completeness, in the attached appendix.
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Chapter 2

Preliminary Definitions and Concepts

2.1 Forward and Inverse Problems

Generally, given a complete description of a physical system, we can predict the out-
come of some measurements. This problem of predicting the result of measurements is
called the modelization problem, the simulation problem, or the forward problem. The in-
verse problem consists of using the actual result of some measurements to infer the values
of the parameters that characterize the system. While the forward problem has a unique
solution, the inverse problem does not [46].

We consider a physical system where variables and parameters interact in a domain
of interest. Variables are physical quantities that are observable or measurable, and their
values change with position and time to form signals. We may express system structures
and properties as parameters, which may also change with position and time. For a given
system, we understand its dynamics based on underlying physical principles describing the
interactions among the variables and parameters. We adopt mathematical tools to express
the interactions in a manageable way [28].

A mathematical representation of the system dynamics is the forward problem formu-
lation. We formulate the forward problem of the system in Figure 2.1 as

y = F(x, u, p) (2.1)

Input& Output&
yu F(x, u; p)

Figure 2.1: Forward problem for a system with parameter p, input u, state variable x and
output y.
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Input& Output&
yu

p

F(x, u; p)

Figure 2.2: Inverse problem to find system parameter p, state variable x from input u, and
output y.

where, F is a linear or nonlinear function that describes the relation between system
parameter p, input u, variable x and output y.

For a given forward problem we consider the inverse problem to find the system pa-
rameters p from the state variable x, a designed input u and measured output y.

We formulate the inverse problem in Figure 2.2 as

p = F †(x, u; y) (2.2)

where, F † is the linear or nonlinear operator defining the inverse problem of finding
the parameters of the system.

In general, most inverse problems are challenging, since the dynamics among inputs,
outputs and system parameters are attributed to complex, possibly nonlinear, physical phe-
nomena. Within a given measurement condition, multiple inputs may result in the same
output for given system parameters. Similarly, different system parameters may produce
the same input-output relation. The inversion process, therefore, suffers from the uncer-
tainty that originates from the mixing process of the corresponding forward problem [28].

Inverse problems are particularly useful, because they give us information about the
unknown parameters in the system that we cannot directly observe. However, the esti-
mation process is typically ill-posed in the sense that noise in the data may give rise to
significant errors in the estimate [48]. In §2.2 we will bring the definition of a well-posed
and an ill-posed problem in more details. To deal with this ill-posed problems many tech-
niques have been developed. In §2.3, we briefly review some mathematical techniques
that are frequently used for rigorous analysis and investigation of quantitative properties
in forward and inverse problems [28].

5



Inverse problems are ill-posed when measurable data are either insufficient for unique-
ness or insensitive to perturbations of parameters to be imaged. To solve an inverse prob-
lem in a robust way, we should adopt a reasonably well-posed modified model at the
expense of a reduced spatial resolution and/or add additional a priori information. Finding
a well-posed model subject to practical constraints of measurable quantities requires deep
knowledge about various mathematical theories in partial differential equations (PDEs)
and functional analysis, including uniqueness, regularity, stability, layer potential tech-
niques, micro-local analysis, regularization, spectral theory and others [28].

2.2 Well-posed and Ill-posed Problems

This section is a brief introduction to the foundations of the theory of ill-posed prob-
lems. The theory of ill-posed problems was developed in the 1960s by several mathemati-
cians, mostly Soviet and American, but the concept of ill-posed problems goes back to J.
Hadamard1 in the beginning of 20th century in the attempt to clarify what types of bound-
ary conditions are most natural for various types of differential equation (for example, the
Dirichlet and analogous problems for elliptic equations and the Cauchy problem for hyper-
bolic equations) [47]. We begin with abstract definitions of well-posedness, ill-posedness.

Let A be an operator and X and Y two topological spaces such that A : X → Y . The
topological spacesX and Y are determined by the formulation of the problem. Throughout
what follows, D(A) is the domain of definition and R(A) is the range of A. Consider the
equation,

Ax = y, x ∈ X, y ∈ Y, (2.3)

where x is the sought solution, y is a given right-hand side, X and Y are some topolog-
ical spaces, and A is a given continuous operator (linear, nonlinear, algebraic, differential,
integral, etc.)

Definition 2.2.1 (Well-posed problem). The problem of solving Eq. (2.3) presents a well-
posed problem on the pair of topological spaces X and Y if the following three conditions
hold:

1. For any y ∈ Y , there exists an element x ∈ X such that Ax = y, i.e., R(A) = Y
(The existence condition),

1Jacques Salomon Hadamard (8 Dec. 1865-17 Oct. 1963) was a French mathematician who made
major contributions in number theory, complex function theory, differential geometry and partial differential
equations.
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2. The solution x ∈ X to the equation Ax = y, is uniquely determined by the element
y ∈ Y , i.e., the inverse operator A−1 exists (The uniqueness condition),

3. the solution x depends on y continuously, i.e., the inverse operator A−1 is a contin-
uous operator (The stability condition).

The definition of well-posedness according to Hadamard is also called the classical
definition of well-posedness.

Definition 2.2.1 can be made more specific by replacing the topological spaces X and
Y by metric, Banach, Hilbert, or Euclidean spaces. In some cases, it is reasonable to
take a topological space for X and a Euclidean space for Y , and so on. The only fixed
requirements in the definition are the existence, uniqueness, and stability of the solution
[30].

Definition 2.2.2 (Ill-posed problem). A problem is ill-posed if at least one of the three
well-posedness conditions does not hold.

Examples of typical well-posed problems include the Dirichlet problem for Laplace’s
equation, and the heat equation with specified initial conditions. These might be regarded
as natural problems that is there are physical processes that solve these problems. By
contrast the inverse heat equation, deducing a previous distribution of temperature from
final data is not well-posed that is the solution is highly sensitive to changes in the final
data.

Such continuum problems must often be discretized in order to obtain a numerical
solution. While in terms of functional analysis such problems are typically continuous,
they may suffer from numerical instability when solved with finite precision, or with errors
in the data. If the problem is well-posed, then it stands a good chance of solution on a
computer using a stable algorithm. If it is not well-posed, it needs to be re-formulated
for numerical treatment. Typically this involves including additional assumptions, such as
smoothness of solution. This process is known as regularization. Tikhonov regularization
is one of the most commonly used method for regularization of linear ill-posed problems.

In fact, many applied problems (in signal and image processing, tomography, spec-
troscopy, control theory, etc.) are ill-posed problems, which fact was widely recognized in
several last decades [50].
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2.3 Methods for Solving Inverse Problems

When solving an inverse problem, the main two issues to be addressed are the unique-
ness and the stability. If the uniqueness is satisfied, then the existence of the solution will
follow from restricting the considered operator to its range. On the other hand, if a so-
lution is not unique, we must check its optimality in terms of its physical meaning and
practical usefulness. The stability is crucial since one wants to make sure that small errors
in the data (which are, in practice, measured quantities) will cause only small errors in the
solution [28], [9].

There is no universal method for solving ill-posed problems. In every specific case, the
main trouble instability has to be tackled in its own way [30]. The problem for solving an
equation can be a well- or ill-posed problem depending on the particular types of the func-
tional spaces in which the solution is sought and the initial conditions are set. Moreover,
different types of equations display different degree of ill-posedness [50].

If we can properly formulate the forward problem of a physical system and also its
inverse problem, we can safely assume that a solution exists. Non-uniqueness often be-
comes a practically important issue, since it is closely related with the inherent mixing
process of the forward problem. Once the inputs are mixed, uniquely sorting out some
inputs and system parameters may not be feasible. The mixing process may also cause
sensitivity problems. When the sensitivity of a certain output to the inputs and/or system
parameters is low, small changes in the inputs or system parameters may result in small
and possibly discontinuous changes in the output, with measurement errors. The inversion
process in general includes a step where the measured output values are divided by sensi-
tivity factors. If we divide small measured values, including errors, by a small sensitivity
factor, we may amplify the errors in the results. The effects of the amplified errors may
easily dominate the inversion process and result in useless solutions, which do not comply
with the continuity requirement [28].

Considering that mixing processes are embedded in most forward problems and that
the related inverse problems are ill-posed in many cases, we need to devise effective meth-
ods to deal with such difficulties. One may incorporate as much a priori information
as possible in the inversion process. Preprocessing methods such as de-noising and fea-
ture extraction can be employed. One may also need to implement some regularization
techniques to find a compromise between the robustness of an inversion method and the
accuracy or sharpness of its solution [28].

Since most inverse problems cannot be solved analytically, computational methods
play a fundamental role [48].However, the solution of ill-posed problems does not depend
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continuously on the data, therefore small errors, whether round off errors, or measure-
ment errors, or perturbations caused by noise, can create large deviations in the solutions.
Therefore the numerical treatment of ill-posed problems is a challenge [45].

The choice of the treatment for an ill-posed problem depends on the problem itself and
the set of data.

9



Chapter 3

Brain activity: The Mathematical Study

Functional magnetic resonance imaging (fMRI) has been the area of great interest among
the functional brain imaging techniques. Its main features: noninvasiveness, radiation free,
and good temporal and spatial resolution, have made it the standard in brain activity mea-
surement. The contrast agent in fMRI, the Blood Oxygenation Level Dependent (BOLD)
signal ([39], [40]), is induced by decreases in the deoxyhemoglobin content in the active
region of the brain. Measuring the BOLD allows to track indirectly changes in the blood
flow.

Expressing the observed phenomena of the BOLD signal as the output of a mathemat-
ical model, was one of the most challenging tasks in the early fMRI studies. Two main
approaches have been adopted to describe the hemodynamic response of the brain: the
General Linear Modeling (GLM) and the nonlinear modeling frameworks. In the GLM
approach, statistical analysis tools are used to assess the convolution of the neural activ-
ity signal with a predefined convolution kernel, called Hemodynamic Response Function
(HRF). Several basis functions have been used as HRF such as Poisson function ([16]),
Gaussian function ([42]), Gamma function ([15], [7]) and inverse Logit function ([33]).
This approach is blind to the physiological aspects that underlie the BOLD transients and
has the main drawback of excluding the nonlinear effects of the BOLD shown by [3], [5]
and [17, 19].

This has motivated the emergence of nonlinear biophysical modeling approaches, among
which the best known is the pioneer work of [5]. The original work proposed a dependence
of the BOLD signal on variations of the normalized cerebral blood flow, volume and de-
oxyhemoglobin content and has been completed by [35]. The model presents the venous
compartment’s structure as a balloon where a stimulus resulting in a local neuronal activity
leads to an increase in the blood flow. This increase exceeds the cerebral metabolic rate
of oxygen thus reducing the concentration of deoxyhemoglobin which in turn results in
an increase in the magnetic resonance signal. The missing relationship between the neu-
ral activity and the cerebral blood flow dynamics was introduced by [19]. Indeed, under
the assumption of a linear relation between the synaptic activity and the regional cere-
bral blood flow, a new variable called the flow-inducing signal has been introduced. The
proposed coupling between the neuronal activity and the cerebral blood flow has a linear
second order behavior.
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Figure 3.1: Mathematical model

In this chapter we introduce the mathematical model that describes the changes in the
hemodynamic properties of the brain during activation in the form of s dynamical system.
We then formulate the inverse problem to find the unknown parameters involved in the
mentioned dynamical system as a parameter estimation problem. We also analyze this
model from a mathematical point of view by proving the uniqueness of the solution the
inverse problem, as well as introducing a vigorous algorithm to solve this inverse problem
for given fMRI measurements.

3.1 The Hemodynamical Model: The Direct Problem

Nonlinear filtering problems are typically described by state-space models comprising
a process and measurement equation. In many practical problems, the process equation
is derived from the underlying physics of a continuous dynamic system, and is expressed
in the form of a set of differential equations. Since the measurements y are acquired by
digital devices; i.e., they are available at discrete time points (t = 1, 2, . . . , T ), we have a
model with a continuous process equation and a discrete measurement equation [19]. The
stochastic representation of this state-space model, with additive noise, can be formulated
as: {

ẋ(t) = A(x(t), u(t), θ) + vt (Process equation)
y(t) = H(x(t), θ) + wt (Measurement equation)

(3.1)

where A is a nonlinear operator that describes the dynamics of the system. This op-
erator is describe in §3.1.1. The explicit form of A is given in §3.1.3. Also, operator H
models the measurements i.e., the BOLD signal, which will be explained in §3.1.2. Vector
~x represents the state variable vector, u(t) is the control input function and ~θ contains the
parameters of the model. Random variables v and w are Gaussian white noises, that is,
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Figure 3.2: Expanded venous “balloon”.

vt ∼ N (0, Q), wt ∼ N (0, R), where Q and R are the error covariance matrices for the
system and the measurements, respectively.

3.1.1 The Balloon model

After stimulation, there is an increased neuronal activity in some part(s) of the brain.
This neuronal activity evokes an increase in oxygen and glucose consumption supplied
by the vascular system. Therefore, blood flow increases to make up for the lack of oxy-
gen used by the activated cells. The vascular bed within a small volume of tissue is then
modeled as an expandable venous compartment. The increase in the blood flow, inflates
a venous “balloon” causing an increase in the blood volume and decrease in the deoxyhe-
moglobin content level in the blood. The balloon model, explains the dynamic of blood
volume and deoxyhemoglobin content called hemodynamic brain responses.

The Balloon model [5] is an input-state-output model with two state variables volume
v and deoxyhemoglobin content q. This is a simple and plausible model that is predicated
on a minimal set of assumptions [20]. The volume flow rate (ml/s) into the tissue, Fin, is
an assumed function of time that drives the system. The volume flow out, Fout, is assume
to primarily depend on the pressure in the venous compartment and the resistance of the
vessels after the balloon. However, rather than introducing the pressure explicitly into the
equations and thus introducing more parameters to the system, Fout is assumed to be a
function of the venous volume V . This is an empirical relation studied by [21] and [35].
The rate of change of the volume of the balloon is the difference between Fin and Fout [5].
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dV

dt
= Fin(t)− Fout(v) (3.2)

and the rate of deoxyhemoglobin is,

dQ

dt
= Fin(t)E Ca − Fout(v)

Q(t)

V (t)
(3.3)

where, Q(t) is the total deoxyhemoglobin in the tissue element, E is the net extrac-
tion of O2 concentration, Ca is the arterial O2 concentration, and Fout(v) × Q(t)/V (t) is
the clearance rate of deoxyhemoglobin from the tissue (Q(t)/V (t) is the average venous
concentration).

By scaling each of these variables with their value at rest (t=0), we have:

v(t) =
V (t)

V0
, q(t) =

Q(t)

Q0

, fin(t) =
Fin(t)

F0

, fout(v) =
Fout(V )

F0

. (3.4)

Therefore, Eqs. (3.2) and (3.6) will be:

τ0
dv

dt
= fin(t)− fout(v) (3.5)

τ0
dq

dt
= fin(t)

E(fin, E0)

E0

− fout(v)
q(t)

v(t)
(3.6)

Equation (3.5) says that volume changes reflect the difference between inflow fin and
outflow fout from the venous compartment with a time constant τ0. This constant repre-
sents the mean transit time (i.e., the average time it takes to traverse the venous compart-
ment or for that compartment to be replenished) and is V0/F0, where F0 is resting flow.

Note that outflow is a function of volume. This function models the balloon-like ca-
pacity of the venous compartment to expel blood at a greater rate when distended. It is
modeled with a single parameter α based on the windkessel model,

fout = v1/α (3.7)
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The physiology of the relationship between flow and volume is determined by the evo-
lution of the transit time. Mandeville1999 et al. [35] reformulated the temporal evolution
of transit time into a description of the dynamics of resistance and capacitance of the bal-
loon using windkessel theory (wind- kessel means leather bag). This enabled them to posit
a form for the temporal evolution of a downstream elastic response to arteriolar vasomotor
changes and estimate mean transit times using measurements of volume and flow, in rats,
using fMRI and laser-Doppler flowmetry. In Eq. (3.7), 1/α = γ+β. γ = 2 represents lam-
inar flow. β > 1 models diminished volume reserve at high pressures and can be thought
of as the ratio of the balloons capacitance to its compliance. At steady state empirical
results from PET suggest α ≈ 0.38 [21]. However, when flow and volume are changing
dynamically, this value is smaller. [35] were the first to measure the dynamic flow-volume
relationship and estimated α ≈ 0.18 , after 6 s of stimulation, with a projected asymptotic
(steady-state) value of 0.36.

Eq. (3.6), represents the change in deoxyhemoglobin, which reflects the delivery of
deoxyhemoglobin into the venous compartment minus that expelled (outflow times con-
centration). The term, E(fin, E0), in Eq. (3.6), is the fraction of oxygen extracted from the
inflowing blood. This is assumed to depend on oxygen delivery and is consequently flow
dependent. A reasonable approximation for E(fin, E0) is given by [5],

E(fin, E0) = 1− (1− E0)
1/fin (3.8)

The second term in Eq. (3.6) represents an important nonlinearity: The effect of flow
on signal is largely determined by the inflation of the balloon, resulting in an increase of
fout(v) and clearance of deoxyhemoglobin. This effect depends upon the concentration of
deoxyhemoglobin such that the clearance attained by the outflow will be severely attenu-
ated when the concentration is low (e.g., during the peak response to a prior stimulus).

This concludes the Balloon model component, where there are only three unknown
parameters that determine the dynamics E0, τ0, and α, namely resting oxygen extraction
fraction (E0 ), mean transit time (τ0), and a stiffness exponent (α) specifying the flow-
volume relationship of the venous balloon. The only thing required, to specify the BOLD
response, is inflow [20] that is chosen to be,

dfin
dt

= s(t) (3.9)

where s is some flow inducing signal defined, operationally, in units corresponding to the
rate of change of normalized flow (i.e., s−1).
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The signal is assumed to subsume many neurogenic and diffusive signal subcompo-
nents and is generated by neuronal activity u(t),

ds

dt
= εu(t)− s(t)/τs − (fin(t)− 1)/τf (3.10)

ε, τs, and τf are the three unknown parameters that determine the dynamics of this compo-
nent of the hemodynamic model. They represent the efficacy with which neuronal activity
causes an increase in signal (ε), the time-constant for signal decay or elimination (τs),
and the time-constant for auto-regulatory feedback from blood flow (τf ). Therefore, the
Balloon model is given by the following set of equations:

ḟin(t) = s(t) (3.11a)
ṡ(t) = εu(t)−Ks(t)−X (fin(t)− 1) ;K = 1/τs,X = 1/τf (3.11b)

v̇(t) =
1

τ0
(fin(t)− v(t)1/α) (3.11c)

q̇(t) =
1

τ0
(fin(t)

1− (1− E0)
1/fin(t)

E0

− v(t)
1
α
−1q(t)) (3.11d)

3.1.2 The BOLD signal

The Balloon model describes the changes in physiological variables during brain acti-
vation. To connect the model with experimental fMRI, we first need a quantitative model
for BOLD signal changes as a function of blood oxygenation level and volume. This
relationship has been extensively explored in recent years using experimental data [41],
numerical Monte Carlo simulations [41, 40], and analytical calculations [49, 5].

The BOLD effect is primarily due to changes in local deoxyhemoglobin content, but
quantitative modeling of this effect requires some subtlety. In fact, there are two sources
of signal change that must be modeled: the intravascular (Si) and the extravascular (Se)
signals [2, 40]. Both regimes are affected by the magnetic field gradients created by the
presence of deoxyhemoglobin, which cause the MR signal to decay faster when deoxyhe-
moglobin increases. The clearance of deoxyhemoglobin reduces intravoxel dephasing and
engenders an increase in signal. [4]. These signal components depend on the deoxyhe-
moglobin content and render the signal a nonlinear function of v and q. The effect of flow
on v and q determines the output and it is these effects that are the essence of the Balloon
model. In fact, we consider the total BOLD signal to be a volume-weighted sum of the Se
and Si signal:

S = (1− V )Se + V Si (3.12)
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Figure 3.3: The BOLD signal

where V is the blood volume fraction. Then, for small signal changes ∆S:

∆S = (1− V0)∆Se −∆V Se + V0∆Si + ∆V Si (3.13)

where V0 is the resting blood volume fraction. Combining numerical results from [40] and
Eq. (3.13) we get the following form for the BOLD signal:

y(t) =
∆S

S
= V0

[
k1(1− q(t)) + k2(1−

q(t)

v(t)
) + k3(1− v(t))

]
(3.14)

where v and q are the normalized blood volume and deoxyhemoglobin content, respec-
tively. (i.e., v = V/V0, q = Q/Q0 and q = v = 1 at rest).

The first term describes the intrinsic extravascular signal, the second term describes the
intravascular signal, and the third term describes the effect of changing the balance of the
sum in Eq. (3.12). The parameters kl, k2 and k3 are scanner-dependent and dimensionless.
Based on the numerical studies of [40] and [2], for a 1.5T scanner and TE1 = 40ms, they
have been estimated to k1 = 7E0, k2 = 2 and k3 = 2E0 − 0.2, where E0 is the resting
oxygen extraction fraction [5].

1TE is the Echo Time. It represents the time in milliseconds between the application of the 90◦ pulse and
the peak of the echo signal in Spin Echo and Inversion Recovery pulse sequences (http://fonar.com/
glossary.htm, accessed October 25, 2013).
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The BOLD response is qualitatively the inverse of the total deoxyhemoglobin response.
Before the balloon has inflated sufficiently the expulsion and dilution may be insufficient
to counteract the increased delivery of deoxygenated blood to the venous compartment and
an early dip in signal may be expressed. After the flow has peaked, and the balloon has
relaxed again, reduced clearance and dilution contribute to the post stimulus undershoot
commonly observed, as illustrated in Figure 3.3 [5].

Throughout what follows we consider the state vector consisted of f, s, v and q. And
the unknown parameters are ε,K,X , τ0, E0, α and V0. For simplicity in our analysis we let
the state vector ~x = (x1(t), x2(t), x3(t), x4(t)) = (f(t), s(t), v(t), q(t)) representing the
state variables (see Table 3.1) and ~θ = (θ1, θ2, θ3, , θ4, θ5, θ6, θ7) = (1/α, ε,K,X , τ0, E0, V0)
representing the parameters (see Table 3.2).

State variables Description Value at rest
x1 Cerebral blood flow (f) 1
x2 Flow inducing signal(s) 0
x3 Cerebral blood volume (v) 1
x4 Total deoxyhemoglobin content level (q) 1

Table 3.1: Description of state variables

Descriptions Biophysiological parameters Typical values
Stiffness exponent (α) (θ1)

−1 .34
Neural efficacy (ε) θ2 .54
Rate of signal decaying (K) θ3 .65
Rate of flow-dependent elimination (X ) θ4 .38
Hemodynamic transit time (τ ) θ5 .98
Resting net oxygen extraction fraction (E0) θ6 .32
Resting blood volume (V0) θ7 .04

Table 3.2: Description of the parameters

3.1.3 Hemodynamical system

The problem of describing the single-event related hemodynamic brain response to an
exogenous input can be described in the framework of the dynamical system theory. The
model we consider in this section is called hemodynamical system (HDS). This mathe-
matical model has been first introduced by [5] and then revisited by [20] to account for the
nonlinearities involved in the process and measurement equations [24]. This hemodynam-
ical system (HDS) is a first order nonlinear differential system given by:
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(HDS)


~̇x(t) = A(~x(t), ~θ, u(t)) + vt
y(t) = H(~x(t), ~θ) + wt ; t ≥ 0
~x(0) = ~x0

(3.15)

where the nonlinear function A is given by:

A(~x(t), u(t), ~θ ) =



x2(t) (3.16a)
θ2u(t)− θ3x2(t)− θ4(x1(t)− 1) (3.16b)
θ5(x1(t)− x3(t)θ1) (3.16c)

θ5(x1(t)
1− (1− θ6)1/x1(t)

θ6
− x4(t)x3(t)(θ1−1)) (3.16d)

and the function H is given by:

H(~x(t), ~θ ) = θ7 [k1(1− x4(t)) + k2(1− x4(t)/x3(t)) + k3(1− x3(t))] (3.17)

• The first equation of HDS describes the underlying physics of the continuous hemo-
dynamic system, that is, the Balloon model.

• The second equation of HDS models the observations, that is, the Blood Oxygena-
tion Level Dependent (BOLD) signal.

• The third equation of HDS is the initial conditions indicating the values of the state
variables at rest.

• vt is a random vector with zero mean and 4 × 4 positive semidefinite covariance
matrix depending on t, Q: N (0, Q). vt represents the possible noise on the system,
with respect to time t.

• wt is a random variable with zero mean and non-negative real valued covariance
depending on t, R: N (0, R). wt represents the possible noise on the measurements,
with respect to time t.

3.2 Mathematical Formulation: The Inverse Problem

The hemodynamic system HDS given by Eqs. (3.15)-(3.17), defines an operator F
that maps the biophysiological parameters ~θ = (θ1, θ2, . . . , θ7) ∈ R7 to the BOLD signal
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y. Therefore, the problem of identifying the unknown parameters ~θ, from the knowledge
of a measured BOLD signal y can be formulated as the following inverse parameter prob-
lem,

(IPP )


Given an initial state ~x0, a control input u(t), and a measured
BOLD signal y, find the biophysiological parameters vector ~θ
such that,

F(~θ; ~x, u) = y

(3.18)

Note that (IPP) given by Eq. (3.18) is a nonlinear inverse problem that falls in the
category of identifying the parameters of ordinary differential systems.
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Chapter 4

Mathematical Analysis

In this section we provide a mathematical analysis based on the Balloon model [5] which
is a first step to show the uniqueness of the solution to the problem (3.18). To do so, we
first go through some calculations and then bring the numerical results in the next chapters.
In our analysis we use two types of control inputs:

• A Gaussian input given by:

u(t) = 2 exp(−(t− µ)2/2σ2) (4.1)

where, µ and σ are positive numbers representing the mean and standard deviation
respectively.

• A step function also called the On-Off input:

u(t) =


0 0 ≤ t < t1
1 t1 ≤ t ≤ t2
0 t2 < t ≤ tf

(4.2)

where the interval [t1, t2] is the time period of applying the stimulus, and tf is the
duration of the experiment.

4.1 The Main Result: A Uniqueness Theorem

The question that if the inverse problem given by IPP admits a unique solution, ~θ has
been a controversial question. To answer this question, we conducted a mathematical anal-
ysis to show the injectivity of the operator F : ~θ → y. To this end, we adopt throughout
this section the following assumptions: Throughout this section we assume:

(∗)


• The initial state ~x0 is given by: ~x0 = [1, 0, 1, 1]T

• The control input u(t) is a square function given by Eq. (4.2).
• The system is noise-free, that is, vt = wt = 0.
• The solution ~x to the HDS given by Eqs. (3.15)-(3.17) exists on [0, tf ].

Theorem 1. Let Θ be the space of admissible system parameters, and X be the space of
solution to the HDS (3.15). Then the mapping F1 : ~θ → ~x from Θ to X is a one-to-one
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mapping.

4.2 Proof of the Main Result

We prove Theorem 1 in four steps. Each step is formulated as a proposition. To this
end, we first state and prove the following technical result.

Lemma 1.1. Let a be a positive real number such that a 6= 1. Consider the function:

fa(x) =
1− (1− x)a

x
; 0 < x < 1 (4.3)

Then, fa is a one-to-one function on (0, 1).

Proof. We prove that fa is a monotonic function. Since fa is differentiable, the mono-
tonicity of fa follows from showing that f ′a(x) has a constant sign on (0, 1). We have:

f ′a(x) =
(1− x)a + ax(1− x)a−1 − 1

x2
; x ∈ (0, 1) (4.4)

We set
ga(x) = ax(1− x)a−1 + (1− x)a − 1; x ∈ (0, 1) (4.5)

Hence, the sign of f ′a is the sign of ga. On the other hand, we have:

g′a(x) = −a(a− 1)x(1− x)a−2 (4.6)

If a > 1, then g′a(x) < 0, whereas if 0 < a < 1, then g′a(x) > 0;∀x ∈ (0, 1).
Since ga(0) = 0, then it follows that if a > 1, then ga is negative on (0, 1), whereas if
0 < a < 1, then ga is positive on (0, 1).

Proposition 1.1. Let ~x be the solution to the HDS given by Eqs. (3.15)-(3.17). Then, under
the assumptions given by (∗), the vector coordinates t → xj; j = 1, 2, 3 are non-constant
functions on [0, tf ].

Proof.

a) First assume t→ x1(t) to be a constant function on [0, tf ]. Then,

x1(t) = 1; ∀t ∈ [0, tf ], (4.7)

21



and
ẋ1(t) = 0; ∀t ∈ [0, tf ]. (4.8)

Therefore, it follows from Eq. (3.16a) that,

x2(t) = 0; ∀t ∈ [0, tf ]. (4.9)

Hence, Eq. (3.16b) implies that,

u(t) = 0; ∀t ∈ [0, tf ], (4.10)

which contradicts assumption (∗). Hence, t → x1(t) cannot be a constant function on
[0, tf ].

b) Next, assume t→ x2(t) is a constant function on [0, tf ]. Then,

x2(t) = 0; ∀t ∈ [0, tf ], (4.11)

and
ẋ2(t) = 0; ∀t ∈ [0, tf ]. (4.12)

Therefore, Eq. (3.16a) and assumptions (∗) ensure that:

x1(t) = 1; ∀t ∈ [0, tf ]. (4.13)

Consequently, it follows from Eq. (3.16b) that

u(t) = 0; ∀t ∈ [0, tf ], (4.14)

which contradicts assumption (∗). Hence, t → x2(t) cannot be a constant function on
[0, tf ].

c) Let t→ x3(t) be a constant function on [0, tf ] then,

ẋ3(t) = 0; ∀t ∈ [0, tf ]. (4.15)

Note that, θ5 6= 0, otherwise it follows from Eqs.(3.16c), (3.16d), and assumptions (∗)
that:

x3(t) = x4(t) = 1; ∀t ∈ [0, tf ]. (4.16)
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Consequently,
~x(t) = ~x0 and y(t) = 0; ∀t ∈ [0, tf ]. (4.17)

Hence, the output is constantly zero which contradicts the stimulus application effect.
Therefore, Eq. (3.16c) gives that:

x1(t)− xθ13 (t) = 0; ∀t ∈ [0, tf ] (4.18)

Hence, we deduce from Eq. (5.12) and assumptions (∗) that:

x1(t) = 1; ∀t ∈ [0, tf ], (4.19)

which contradicts part (a). Therefore, t→ x3(t) cannot be a constant function on [0, tf ].

Proposition 1.2. Under the assumptions given by (∗), the biophysiological parameters
θ2, θ3 and θ4, solution of the inverse parameter problem IPP are unique.

Proof. Let t = t1, where t1 is defined in Eq. (4.2). It follows from HDS, Eq. (3.16b) and
assumptions given by (∗) that:

ẋ2(t1) = θ2 − θ3x2(t1)− θ4(x1(t1)− 1) (4.20)

and
~x(t1) = ~x0. (4.21)

Hence,
θ2 = ẋ2(t1). (4.22)

Furthermore, it follows from HDS and Eqs. (3.16a)-(3.16b) that:

ẍ2(t) = −θ3ẋ2(t)− θ4x2(t); ∀t ∈ (t1, t2] (4.23)

where t1 and t2 are defined in Eq. (4.2).

Therefore, for any t′, t′′ ∈ (t1, t2) we have:[
−ẍ2(t′)
−ẍ2(t′′)

]
=

[
ẋ2(t

′) x2(t
′)

ẋ2(t
′′) x2(t

′′)

] [
θ3
θ4

]
(4.24)

Observe that x2 is a continuous function on [0, tf ]. Therefore, it attains its maximum at
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some t′′ ∈ (t1, t2]. Let
x2(t

′′) = max
t1<t<t2

x2(t) = xmax2 . (4.25)

Therefore, ẋ2(t′′) = 0. Note that, xmax2 6= 0 because otherwise

x2(t) = 0; ∀t ∈ [0, tf ], (4.26)

which contradicts Proposition 1.1.

Furthermore, there exists a t′ ∈ (t1, t2) such that x2(t′) 6= 0. Otherwise,

x2(t) = 0; ∀t ∈ [0, tf ], (4.27)

which contradicts Proposition 1.1. Hence, it follows from Eq. (4.24) that:[
θ3
θ4

]
=

[
(x2(t

′)ẍ2(t
′′)− xmax2 ẍ2(t

′)) /xmax2 ẋ2(t
′)

−ẍ2(t′′)/xmax2

]
(4.28)

Proposition 1.3. Under the assumptions given by (∗), the biophysiological parameters θ1
and θ5, solution of the inverse parameter problem IPP are unique.

Proof. Let t∗ ∈ (0, tf ] such that:

x3(t
∗) = max

0<t≤tf
x3(t) = xmax3 . (4.29)

Note that t∗ exists because x3 is continuous on [0, tf ]. Consequently, ẋ3(t∗) = 0. It follows
from Eq. (3.16c) that:

θ5
(
x1(t

∗)− xθ13 (t∗)
)

= 0. (4.30)

Since θ5 6= 0 (see the proof of Proposition 1.1). Then,

x1(t
∗)− xθ13 (t∗) = 0. (4.31)

Next, we consider two cases,
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Case 1: x3(t∗) 6= 1. Then, we deduce from Eq. (5.14) that:

θ1 =
lnx1(t

∗)

lnx3(t∗)
=

lnx1(t
∗)

lnxmax3

(4.32)

Case 2: x3(t∗) = 1. We consider t∗ ∈ (0, tf ] such that:

x3(t∗) = min
0<t<tf

x3(t) = xmin3 . (4.33)

Note that xmin3 6= 1, otherwise

max
0<t≤tf

x3(t) = min
0<t≤tf

x3(t) = 1. (4.34)

Hence,
x3(t) = 1; ∀t ∈ [0, tf ], (4.35)

which contradicts Proposition 1.1.

Therefore,

θ1 =
lnx1(t∗)

lnx3(t∗)
=

lnx1(t∗)

lnxmin3

(4.36)

Furthermore, it follows from Eq. (3.16c) that there is at least one t̃ ∈ [0, tf ] such that:

x1(t̃)− xθ13 (t̃) 6= 0. (4.37)

Otherwise,
ẋ3(t) = 0; ∀t ∈ [0, tf ]. (4.38)

Hence, it follows from assumptions (∗) that:

x3(t) = 1; ∀t ∈ [0, tf ], (4.39)

which contradicts Proposition 1.1. We then we deduce that:

θ5 =
ẋ3(t̃)

x1(t̃)− xθ13 (t̃)
(4.40)
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Proposition 1.4. Under the assumptions given by (∗), the biophysiological parameters θ6
and θ7, solution of the inverse parameter problem IPP are unique.

Proof. It follows from the continuity of x1 on [0, tf ] that there is t̃ ∈ (0, tf ], such that:

x1(t̃) = max
0<t≤tf

x1(t) = xmax1 ≥ 1. (4.41)

Then, we obtain from Eq. (3.16d) that:

ẋ4(t̃) = θ5
(
xmax1 fa(θ6)− x4(t̃)x3(θ1−1)(t̃)

)
, (4.42)

where fa is the function defined in Lemma 1.1 with a = 1/xmax1 . Since θ5 6= 0 (see the
proof of Proposition 1.1), then it follows from Eq. (5.2) that:

fa(θ6) = a

(
ẋ4(t̃)

θ5
+ x4(t̃)x3

(θ1−1)(t̃)

)
. (4.43)

Since fa is a one-to-one function (see Lemma 1.1 ), we then conclude that θ6 is unique.

Next, we prove the uniqueness of θ7. First, we rewrite Eq. (3.17) as follows:

y(t) = θ7ỹ(t), (4.44)

where

ỹ(t) = 7θ6(1− x4(t)) + 2(1− x4(t)/x3(t)) + (2θ6 − 0.2)(1− x3(t)). (4.45)

Hence, there is at least one t̂ ∈ [0, tf ] such that, ỹ(t̂) 6= 0 otherwise

y(t) = 0; ∀t ∈ [0, tf ], (4.46)

which means that there is no activity. Therefore,

u(t) = 0; ∀t ∈ [0, tf ], (4.47)

which contradicts assumption (∗). Consequently, it follows from Eqs. (4.44) and (4.45)
that:

θ7 =
y(t̂)

ỹ(t̂)
(4.48)
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Remark 4.2.1. Theorem 1 shows that operator F can be considered as F : ~θ
F1→ ~x

F2→ y,
where operator F1 : ~θ → ~x is a one-to-one function. This is the first step in proving the
uniqueness of the solution to the problem of finding parameters of the HDS (3.15) that best
describe the system output, i.e., the BOLD signal. With the result presented in Theorem 1,
it remains to prove that the operator F2 : ~x → y is a one-to-one mapping. However, this
problem is still an ongoing work.

4.3 Sensitivity Analysis

In this section, we provide the results pertaining to calculating the Jacobian of the
measurement function required in the Newton iterations equations.

4.3.1 Evaluation of the Jacobian for the Newton Method

The critical step in the numerical implementation of the regularized Newton method in
Eq. (5.48) is the computation of the Jacobian JH at each iteration m. Such computation
must be executed with a high level of accuracy to ensure the stability, fast convergence
and computational efficiency of the proposed Newton algorithm. We compute JH using
the following characterization of the derivative:

Theorem 2. Let vl(tj) =
∂x

∂θl
(tj) be the derivative of the solution ~x of HDS (3.15) with

respect to θl, at time tj . Then we have:

∂vl
∂θ

(t) =
∂A

∂x
(x, t)vl +

∂A

∂θ
(x, t)

∂y

∂θ
(t) =

∂H

∂x
(x, t)vl +

∂H

∂θ
(x, t)

∂x

∂θ
(t = 0) = 0

(4.49)
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where:
∂vl
∂θ

is calculated as:



v̇l1 = vl2
v̇l2 = −θ3vl2 − θ4vl1 + δl2u(t)− δl3x2 − δl4(x1 − 1)

v̇l3 = θ5
[
vl1 − θ1xθ1−13 vl3

]
+ δ5l(x1 − xθ13 )− δl1θ5xθ13 lnx3

v̇l4 = θ5

[
vl1
θ6

(
(1− (1− θ6)1/x1) +

(1− θ6)1/x1 ln(1− θ6)
x1

)
−

x
(θ1−1)
3 vl4 − (θ1 − 1)x4x

(θ1−2)
3 vl3

]
+θ5

[
δ6l
θ6

(
(1− θ6)1/x1−1 −

x1
θ6

(1− (1− θ6)1/x1)
)
− x4x(θ1−1)3 δl1 lnx3

]
+δ5l

(
x1

1− (1− θ6)1/x1
θ6

− x4x(θ1−1)3

)
vl1(0) = vl2(0) = vl3(0) = vl4(0) = 0

(4.50)

where, ~vli =
∂xi
∂θl

, for i = 1, · · · , 4 and l = 1, · · · , np, and,

∂y

∂θ
(tj) =

∂H

∂θl
(tj) = δ7l

[
7θ6(1− xj4) + 2(1− xj4

xj3
) + (1− xj3)(2θ6 − 0.2)

]
+ δ6l [7θ7(1− xj4) + (1− xj3)2θ7]

− vl4θ7

[
7θ6 +

2

xj3

]
+ vl3θ7

[
2xj4
x2j3
− 2θ6 + 0.2

]
(4.51)

Note that the differentiability of ~x follows from the classical regularity results of the
solution of a time evolution equation with respect to the coefficients of HDS (3.15). The
proof of Theorem 2 is then a direct consequence of the differentiability of ~x and the
use of the chain rule. Therefore, we can construct the Jacobian matrix JH(θ(m))(tj) =[
∂H

∂θl
(θ(m))(tj)

]
for j = 1, . . . ,M , where M is the number of measurements, and l =

1, . . . , np, where np is the number of parameters. Also, note that the IVP given by Eq.
(4.50) is different from the IVP given by Eq. (3.15) only by extra terms on the right hand
side.
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Chapter 5

Parameter Estimation

The construction of reliable model has raised the challenging question of estimating the
model parameters, hidden states and ultimately the neural activity. The first important
attempt has been proposed by [20] using Volterra Kernel expansion to characterize the
deterministic hemodynamic response. The bayesian framework was introduced by [13]
where the restriction induced by the use of temporal basis was replaced by Gaussian priors
on the parameters, the nonlinear dynamic equation was also approximated using a bilinear
equation to facilitate the likelihood maximization. To account for physiological noise, [44]
added a wiener process to the dynamics equation. He used a Local Linearization Filter
(LLF) based on a truncated Ito-Taylor expansion of the dynamics equation to estimate the
state and parameters of the balloon model and introduced a fixed number of radial basis
functions to approximate the neural activity.

Similar filtering approaches were proposed by [10] (iterative extended Kalman filtering
coupled with simplex search method), [29] (particle filtering), [37] (particle smoothing),
[25] (Unscented Kalman filtering) and used to infer model states and parameters with more
or less accuracy of the estimation and computational complexity. Some of the filtering
techniques, namely the extended Kalman filtering and the particle filtering were compared
to a variational Bayesian method called Dynamic Expectation Maximization (DEM), pro-
posed by [18], which has shown better results in terms of robustness. However, it was
shown in [23] that Cubature Kalman filter (CKF) [1] and its square root form outperforms
the DEM.

The methods reported above used different strategies to add prior knowledge that
makes the estimation problem well-posed. For example, [44] used radial basis functions
to express the input while [23] supposed Gaussian priors for the parameters. Small prior
variances are sought to overcome the identifiability issues of some parameters.

In this chapter we introduce a new algorithm, which employes two powerful tools,
namely, the Cubature Kalman filtering (CKF) and a regularized Newton algorithm (RNA)
to estimate the parameters and the state of the nonlinear dynamical system described in
3.1.3. This algorithm uses CKF to de-noise the state from a set of noisy measurements
and RNA to estimate the parameters of the considered nonlinear system.

We begin this chapter by describing the CKF algorithm in §5.1. We then present the
RNA algorithm in §5.2. §5.3 is devoted to the description of the proposed solution method-
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ology.

5.1 Cubature Kalman Filtering Method (CKF)

5.1.1 Kalman Filtering Frame Work

Kalman filter also known as linear quadratic estimation (LQE) is an efficient recursive
filter that estimates the internal state of a linear dynamical system from a series of noisy
measurements. The Kalman filter has been the subject of extensive research and applica-
tion. It has numerous applications in technology. A common application of this filter is for
guidance, navigation and control of vehicles, particularly aircraft and spacecraft. Further-
more, the Kalman filter is a widely applied concept in time series analysis used in fields
such as signal processing and econometrics.

The Kalman filter is a set of mathematical equations that provides an efficient recur-
sive solution of the least-square method. The filter is very powerful in several aspects: it
supports estimations of past, present and even future states, and it can do so even when the
precise nature of the modeled system is unknown. Unlike most of the classical parameter
estimation methods, the Kalman filter is a recursive estimator. At each time step the filter
refines the previous estimate by incorporating in it new information from the model and
from the output [32].

The Kalman filter works in two steps: first it estimates the process state and covari-
ance at some time using information from the process only (prediction); then it employs
a feedback from the noisy measurements to improve the first estimates (correction). As
such, the equations for the Kalman filter fall into two groups: time update equations for
the prediction step and measurement update equations for the correction step. The time
update equations are responsible for propagating forward (in time) the current state and
error covariance estimates to obtain the a priori estimates for the next time step. The mea-
surement update equations are responsible for the feedback, i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. Af-
ter each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to predict the new a priori estimates.

In order to see these ideas in a more rigorous mathematical framework, consider the
following system:

{
xt+1 = f(xt, ut) + vt
yt+1 = h(xt+1, ut+1) + wt+1

(5.1)
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where f : Rnx ×Rnu → Rnx and h : Rnx ×Rnu → Rnz are some known functions; ut
is the known control input; yt represents the measurement. The variable vt, usually called
the process noise, represents the amount of confidence we have in our model. The process
noise is assumed to be a Gaussian random variable with zero mean and covariance Q1,
whereQ is a positive definite matrix. The noise that affects the different components of the
state is assumed to be uncorrelated, so that Q is diagonal. Larger entries in Q correspond
to lower confidence in the accuracy of the model. The variable wt is referred to as the
measurement noise, and expresses the reliability of the measurements. The measurement
noise is also assumed to be Gaussian with zero mean, and its covariance matrix will be
denoted by R2. Again, R is assumed to be a positive definite, diagonal matrix, since the
noise that affects different measurements is assumed to be uncorrelated. Note that while
Q is usually chosen by the user in order to tell the filter how much the model should be
trusted, R is fixed by the quality of the measurements. In other words, the statistics of the
measurements noise are assumed to be known [32].

The key approximation to develop Bayesian filter theory under Gaussian domain is
that the predictive density p(xt+1|Dt) and the filter likelihood density p(yt+1|Dt+1) are
both Gaussian, which eventually leads to a Gaussian posterior density p(xt+1|Dt+1). Dt =
{ui, yi}ti=0 represents the history of input-measurement pairs up to time t.

In the prediction step, the filter produces estimates of the current state variables, along
with their uncertainties. In other words it calculates the mean x̂t+1|t and the associated
covariance Pt+1|t of the Gaussian predictive density. We have

x̂t+1|t = E[xt+1|Dt] (5.2)

where E is the statistical expectation operator. Eqs. (5.1) and (5.2) will then give:

x̂t+1|t = E[f(xt, ut) + vt|Dt]. (5.3)

Since vt is assume to be zero-mean and uncorrelated with the past measurements, we get

x̂t+1|t = E[f(xt, ut)|Dt]

=

∫
Rnx

f(xt, ut)p(xt|Dt)dxt

=

∫
Rnx

f(xt, ut)×N (xt; x̂t|t, Pt|t)dxt (5.4)

1vt ∼ N (0, Q)
2wt ∼ N (0, R)
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Throughout what follows,N (x;µ,Σ) is used as a conventional symbol for a Gaussian
density of random variable x with mean value µ and covariance Σ.

Similarly, we obtain the associated error covariance as follows

Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
T |y1:t]

=

∫
Rnx

f(xt, ut)f
T (xt, ut)×N (xt; x̂t|t, Pt|t)dxt

−x̂t+1|tx̂
T
t+1|t +Q. (5.5)

In the correction step first the predicted measurement ŷt+1|t and its associated covari-
ance Pyy,t+1|t are calculated.

ŷt+1|t = E[yt+1|Dt]

= E[h(xt+1, ut+1) + wt+1|Dt] (5.6)

Again since wt is assumed to be zero-mean and uncorrelated with the past measurements,
we get

ŷt+1|t = E[h(xt+1, ut+1)|Dt]

=

∫
Rnx

h(xt+1, ut+1)×N (xt+1; x̂t+1|t, Pt+1|t)dxt+1 (5.7)

and the associated covariance is

Pyy,t+1|t = E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
T ]

=

∫
Rnx

h(xt+1, ut+1)h
T (xt+1, ut+1)×N (xt+1; x̂t+1|t, Pt+1|t)dxt+1

−ŷt+1|tŷ
T
t+1|t +R (5.8)

Therefore, the conditional Gaussian density of the joint state and the measurement can be
written as

p
(
[xTt+1y

T
t+1]

T |Dt

)
= N

((
x̂t+1|t
ŷt+1|t

)
,

(
Pxx,t+1|t Pxy,t+1|t
Pyx,t+1|t Pyy,t+1|t

))
(5.9)

Since, covariance matrices are symmetric, therefore Pyx,t+1|t = P T
xy,t+1|t, and it is given
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by

Pxy,t+1|t =

∫
Rnx

xt+1h
T (xt+1, ut+1)×N (xt+1; x̂t+1|t, Pt+1|t)dxt+1 − x̂t+1|tŷ

T
t+1|t (5.10)

Once the outcome of the next measurement (necessarily corrupted with some amount of
error, including random noise) is observed, the estimates obtained in the previous step
(x̂t+1|t and Pt+1|t ) are updated using a weighted average, with more weight being given to
estimates with higher certainty. The updated mean of the posterior density will then be

x̂t+1|t+1 = x̂t+1|t +Wt+1(ỹt+1 − ŷt+1|t) (5.11)

and its associated covariance is

Pxx,t+1|t+1 = Pxx,t+1|t +Wt+1Pyy,t+1|tW
T
t+1 (5.12)

where the term Wt+1 in Eqs. (5.11) and (5.12) is called “Kalman gain”, and is calculated
in the least square sense to minimize the Pxx,t+1|t+1 [1]. Kalman gain is given by the
following equation:

Wt+1 = Pxy,t+1|tP
−1
yy,t+1|t (5.13)

A wide variety of Kalman filters have now been developed, from Kalman’s original
formulation, now called the “Simple Kalman filter”. In the original Kalman filter, one of
the main assumptions is the linearity of the underlying dynamic model, but in reality most
of the dynamical systems that are being studied are not linear but nonlinear. This have led
to extending the original Kalman filter to the one that can work with the nonlinear systems.

Cubature Kalman filter (CKF) is a recursive, nonlinear and derivative-free filtering
algorithm, developed under Kalman filtering frame work for high-dimensional nonlinear
state estimation . CKF computes the first two moments (that is, mean and covariance) of
all conditional densities using a highly efficient numerical integration method called radial
cubature rules [24, 1]. Since it is derivative free, it smoothes the solution and makes it less
sensitive to the measurement noise.

5.1.2 Gaussian Cubature Integrals

In calculating the first two momenta of the random variables in the prediction and
correction steps, we encounter integrals of the form of a nonlinear function multiplied by
the Gaussian density function. Here we describe a method based on the assumption that
the domain of integration is symmetric and Gaussian.
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CKF specifically employs the third-degree spherical-radial rule to approximate the in-
tegrals of the form ‘nonlinear function × Gaussian density’, numerically using a set of m
equally weighted symmetric cubature points.

Consider the integral of the following form:

I(f) =

∫
Rn
f(x) exp(−xTx) dx (5.14)

where, f is a nonlinear function and random variable x is a zero mean random variable
with covariance I.

Theorem 3. For the case where the random variable x has normal distribution with mean
value µ and covariance Σ we have:∫

Rn
f(x)N (x;µ,Σ)dx =

1√
πn

∫
Rn
f(
√

2Σx+ µ) exp(−xTx)dx (5.15)

Proof. Using the change of variables x =
√

2Σy + µ, the probability density function for
multivariate normal random variable x ∼ N (µ,Σ) is as follows:

fx(x) =
1√

(2π)n|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)) (5.16)

Since Σ is a positive definite matrix, we can factorize Σ to be Σ =
√

Σ
√

Σ
T

. Therefore,
Eq. (5.15) becomes,

=

∫
Rn
f(
√

2Σy + µ)
1√

2π|Σ|
exp(−yTy)|

√
2Σ|dy

=
1√
πn

∫
Rn
f(
√

2Σx+ µ) exp(−xTx)dx (5.17)

Where, x, µ ∈ Rn, Σ ∈ Rn×n, |Σ| is the determinant of Σ.

To solve the integral in Eq. (5.14), we first use the following change of variable to
transform the integral into spherical-radial integration form:

x = ry (5.18)
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with,
yTy = 1. (5.19)

Therefore,
xTx = r2, r ∈ [0,∞) (5.20)

Then, Eq. (5.14) can be rewritten in the spherical-radial coordinate system as

I(f) =

∫ ∞
0

∫
Un

f(ry)rn−1 exp(−r2)dσ(y)dr (5.21)

where, Un is the surface of the sphere defined by Un = {y ∈ Rn|yTy = 1} and σ(.) is the
area element on Un. Therefore we have:

The Radial integral,

I =

∫ ∞
0

S(r)rn−1 exp(−r2)dr (5.22)

where S(r) is defined by the spherical integral with the unit weighting function w(y) = 1

S(r) =

∫
Un

f(rs)dσ(s) (5.23)

We use a mr-point Gaussian quadrature to solve the integral in (5.22). Gaussian quadra-
ture rule is a numerical approximation of the definite integral of a function as a weighted
sum of function values at specified points within the domain of integration. An n-point
Gaussian quadrature rule is a quadrature rule which gives an exact result for polynomials
of degree 2n− 1 or less by a suitable choice of the points rj , for j = 1, . . . , n. Therefore,
the integral in (5.22) can be approximated as∫ ∞

0

S(r)rn−1 exp(−r2)dr =
mr∑
i=1

aif(ri) (5.24)

where, ri are the quadrature points and ai are the weights. We use a ms-point spherical-
radial cubature rule to solve the integral in (5.23):∫

Un

f(rs)dσ(s) =
ms∑
i=1

bif(rsi) (5.25)
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Therefore,

From (5.24) and (5.25) we have a (ms × mr)-point spherical-radial cubature rule to
solve (5.14): ∫

Rn
f(x) exp(−xTx) dx ≈

ms∑
i=1

mr∑
i=1

aibif(risi) (5.26)

For a third-degree spherical-radial rule, mr = 1 and ms = 2n, we have a total of 2n
cubature points. Therefore for a standard Gaussian weighted integral:

IN (f) =

∫
Rn
f(x)N (x; 0, I)dx ≈

m∑
i=1

ωif(ξi) (5.27)

with, {ξi, ωi}mi=1 :

ξi =

√
m

2
[1]i

ωi =
1

m
, i = 1, 2, · · · ,m = 2nx

(5.28)

where, ξi are the cubature points and ωi are the weight functions. [1]i is the i-th element
of [1] ∈ Rn which represents a completely fully symmetric set of points in Rn that can be
obtained by permutation and changing the sign of the generator (1, 0, 0, · · · ) ∈ Rn.

5.1.3 CKF Algorithm Summary

We can summarize the CKF algorithm as follows:

Step I: Time Update:

Assume that x̂t|t and Pt|t are the estimate for the state and its associated error covari-
ance matrix at time t, respectively.

1. First step is to factorize the error covariance matrix Pt|t associated with the state xt.
Since Pt|t is positive definite and symmetric we use Cholesky factorization to get :

Pt|t = St|tS
T
t|t (5.29)

2. Evaluate the cubature points. Since xt ∼ (x̂t|t, Pt|t), by Theorem 3 cubature points
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are given by:
Xi,t|t = St|tξi + x̂t|t; i = 1, 2, · · · ,m (5.30)

where, ξi are given by Eq. (5.28).

3. Evaluate the process at the cubature points to obtain the propagated cubature points:

X∗i,t+1|t = f(Xi,t|t, ut); i = 1, 2, · · · ,m (5.31)

4. The average over the propagated cubature points will give us an estimate for the
state at the next time step. We use this estimate as a prediction for the state. x̂t+1|t
denotes the estimate for the state given the measurements up to time t.

x̂t+1|t =
1

m

m∑
i=1

X∗i,t+1|t (5.32)

5. Then we calculate the predicted error covariance, associated with x̂t+1|t:

Pt+1|t =
1

m

m∑
i=1

X∗i,t+1|tX
∗T
i,t+1|t − x̂t+1|tx̂

T
t+1|t +Q (5.33)

Step II: Measurement Update

6. Similar to step (1) we use the Cholesky factorization to factorize Pt+1|t given by Eq.
(5.33) to get:

Pt+1|t = St+1|tS
T
t+1|t (5.34)

7. Then we evaluate the cubature points using the estimate for the state obtained by
Eqs. (5.32) and (5.33):

Xi,t+1|t = St+1|tξi + x̂t+1|t; i = 1, 2, · · · ,m (5.35)

8. Then we evaluate the measurement function at the cubature points given by Eq.
(5.34) to get the propagated cubature points:

Yi,t+1|t = h(Xi,t+1|t, ut+1), i = 1, 2, · · · ,m (5.36)

9. Then we calculate an estimate for the measurement at the next time step. We use
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this value as a prediction for the measurement:

ŷt+1|t =
1

m

m∑
i=1

Yi,t+1|t (5.37)

10. Estimate the error covariance matrix associated with ŷt+1|t. In Kalman filtering
framework this term is called innovation covariance matrix :

Pyy,t+1|t =
1

m

m∑
i=1

Yi,t+1|tY
T
i,t+1|t − ŷt+1|tŷ

T
t+1|t +R (5.38)

11. The cross-covariance matrix is then given by:

Pxy,t+1|t =
1

m

m∑
i=1

X∗i,t+1|tY
T
i,t+1|t − x̂t+1|tŷ

T
t+1|t (5.39)

12. Then we calculate the term called Kalman gain, which is calculated in the least
squares sense to minimize the state error covariance matrix:

Wt+1 = Pxy,t+1|tP
−1
yy,t+1|t (5.40)

13. At this point, we can update the predicted state obtained in step (4). x̂t+1|t+1 denotes
the estimate for the state given the measurements up to time t+ 1.

x̂t+1|t+1 = x̂t+1|t +Wt+1(ỹt+1 − ŷt+1|t) (5.41)

14. The updated corresponding error covariance matrix is also given by:

Pt+1|t+1 = Pt+1|t −Wt+1Pyy,t+1|tW
T
t+1 (5.42)

Then we repeat steps (1)-(14) with x̂t+1|t+1, and Pt+1|t+1 obtained from Eqs. (5.41) and
(5.42).

5.2 The Regularized Newton Algorithm (RNA)

In recent fMRI studies some inversion methods, such as Dynamic expectation Maxi-
mization (DEM), Cubature Kalman filter (CKF), Sequential Monte Carlo (SMC), Square
root Cubature Kalman filter (SCKF) have been used. Among these methods, SCKF has
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been shown to outperform DEM, EKF, CKF and SMC [24]. However, applying the men-
tioned methods requires some a priori knowledge about the parameters of the system.
Also, these methods do not account for the noise on the initial states. In this study we pro-
pose the regularized Newton method that can estimate the parameters efficiently with no
prior information or assumption about their initial values. Furthermore, we prove that the
combination of iterative regularized Newton method and CKF can significantly improve
the reconstructions even in the presence of noise on the initial state. So far there has been
some ambiguity about the uniqueness of the parameters based on numerical studies, in this
paper we provide an important result based on mathematical analysis that shows the value
of the parameters are in fact unique.

Finding the biophysiological parameters corresponding to a given profile as stated in
(3.18) is an inverse problem that falls into the category of parameter estimation problems.
This problem is difficult to solve, specially from a numerical point of view, because it is
nonlinear and ill-posed in the sense of Hadamard [22]. In order to overcome these diffi-
culties, we use a regularized Newton method. The iterative Newton method addresses the
nonlinear aspect of the problem, while the Tikhonov regularization procedure addresses
its ill-posedness and restores the stability of the problem.

We model the measured data as:

y = H(~x, ~θ) + w (5.43)

Therefore, the problem of finding the set of parameters ~θ that best describe the measured
data y can be formulated as a minimization problem:

Given a measured BOLD signal ỹ = (ỹ0, ỹ1, . . . , ỹM), find admissible ~θ such that:

~θ = argmin
θ
‖H(~x, ~θ)− ỹ‖2 (5.44)

Solving the nonlinear equation (5.44) by the classical Newton method requires solving the
following linearized system at each iteration m. Let y(m) = H(m)(~x, ~θ),

J
(m)
H δ~θ(m) = ỹ − y(m) (5.45)

and then we update ~θ
~θ(m+1) = ~θ(m) + ~δθ

(m)
(5.46)

Here J (m)
H δ~θ(m)(tj) =

[
∂H
∂θl

(tj)
]

is the Jacobian of the operator H . J (m)
H δ~θ(m) is a (M × 7)
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matrix. The lth column of J is the derivative of H with respect to θl at iteration m. In
practice, the linear system (5.45) is overdetermined, hence we solve this system in the
least squares sense. This means at each iteration m, we compute the δ~θ as the solution of
the normal equation:

J
T (m)
H J

(m)
H

~δθ
(m)

= J
T (m)
H (ỹ − y(m)) (5.47)

Also, note that the linear system (5.47) is severely ill-conditioned. Therefore, to address
this issue we propose using the classical Tikhonov regularization procedure. That is we
solve the following system at each iteration m:

(J
T (m)
H J

(m)
H + αI)δ~θ(m) = J

T (m)
H b (5.48)

where,
b = ỹ − y(m), (5.49)

and the positive real number α represents the Tikhonov regularization parameter.

5.3 The Proposed Solution Methodology (RNA-CKF)

We propose a method which combines the two algorithms described in §5.1 and §5.2
to address the issues and limitations faced by using each one of these algorithms by itself.
Since the system of interest is a nonlinear system, in the sense that both states and param-
eters of the system appear in the nonlinear way in the system, we need to use a method to
address these nonlinearities. Also, the problem of identifying the parameters of this sys-
tem is an ill-posed problem and therefore unstable, we designed this proposed algorithm
which we refer to as RNA-CKF, in such a way to address all these difficulties. The Newton
method addresses the nonlinearity of the system, while the regularization step addresses
the instability of the problem. Moreover, CKF has been embedded in this algorithm to
deal with the noise on the measurements and de-noise the states.

5.3.1 The algorithm

The RNA-CKF algorithm can be summarized as follows:

• Step 0 (Initialization). We start the algorithm with the initial data:

~θ(m) =

 θ
(m)
1

...
θ
(m)
np

 , ~̃y =

 y1
...
yM

 , ~x(m)
0 = ~x(m)(0),P(m),Q,R (5.50)
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where,

– ~θ(m) is the value of the parameters at iteration m.

– ~̃y is the measured BOLD signal that is tainted with noise.

– ~x
(m)
0 is the initial value of the state variables at iteration m and at time (t = 0).

• Step 1 (At iteration m). We assume that we have computed the biophysiological
parameters ~θ(i) = (θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
7 ); for 0 ≤ i ≤ m. Then, using ~θ(m) we apply

CKF to a get the out put that is the BOLD signal, ~y(m). Since CKF is a de-noising
filter which de-noises the state while producing the output. This step requires M ×
2nx times solving the HDS.

• Stopping criteria. At each iteration after producing an output, we check the stop-
ping criteria:

‖~̃y − ~y(m)‖2 < ε (5.51)

If the inequality (5.51) holds, we stop the algorithm, and take ~θ(m) as the estimated
values of the parameters and ~y(m) is the reconstructed BOLD signal. Otherwise, we
go to the next step.

• Step 2 (Update ~θ(m+1)). At this step, we evaluate δθ(m) by solving the (7 × 7)
system given in Eq. (5.47), and update the parameters to use in the next iteration.

We use RNA to calculate ~δθ
(m)

. The calculation is as follows:

– Step 2-1: First we find ~vli =
∂xi
∂θl

, solution of the HDS, for i = 1, · · · , 4
and l = 1, · · · , np (np being the number of parameters). We solve HDS using
Runge-Kutta order 4 with the initial condition:

~θ = ~θ(m), ~x = ~x(m) (5.52)

– Step 2-2: Then, we calculate JH(θ
(m)
l )(tj) for l = 1, · · · , np and j = 1, · · · ,M ,

as described in Theorem 2. Once we build the Jacobian matrix, JH . For
~θ = ~θ(m), and ~xj = ~x(m)(tj).

– Step 2-3: Next, we get the Taylor expansion of the measurement equation, Eq.
(3.17), that is:

~̃y = ~y(m) + J
(m)
H

~δθ
(m)

(5.53)
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where, m is the number of iterations. Let,

~̃y − ~y(m) = b (5.54)

Using the regularization parameter α we have:

(J
T (m)
H J

(m)
H + αI) ~δθ

(m)
= J

T (m)
H b (5.55)

– Step 2-4: Once we calculate ~δθ
(m)

we update the parameters as follows:

~θ(m+1) = ~θ(m) + ~δθ
(m)

(5.56)

• Step 3: Now using ~θ(m+1) and ~x(m+1) we repeat the steps (1) and (2) to get a new
BOLD signal.

5.3.2 Schematic Diagram

This algorithm can be summarized in the following diagram
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~y(m)

Figure 5.1: RNA-CKF schematic diagram.
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Chapter 6

Performance Assessment: Illustrative Results

We demonstrate in this chapter, the performance of the proposed solution methodology
for calibrating the hemodynamical model of brain responses. To this end, we first present
the results of a numerical investigation that illustrates the sensitivity of the response to the
change in the parameters. Then, we present the calibration results obtained by performing
two categories of experiments: numerical simulations using synthetic data, and numerical
simulations using real, in vivo data received from Nationwide Childrens Hospital, Colum-
bus, OH.

6.1 Sensitivity Analysis: A Numerical Study

Similarly to the [10], we numerically investigate in this section the dependance of the
response to the changes in the parameters of the system. We denote θi to be the parameter
we are investigating its sensitivity and θ̃ be the rest of parameters (θ = {θi, θ̃} ), and

J =
∂F
∂θ

(x, u, θ) be the Jacobian and Ji be the ith column of the Jacobian matrix and J̃
the matrix consisting of the remaining columns. Then for a small parameter change dθ we
have:

F(u, θ + dθ) = F(u, θ) + Jdθ = F(u, θ) + Jidθi + J̃ θ̃ (6.1)

Note that, for a small change dθi of θi, f varies by Jiθi. However, if Ji is not orthogonal to
the other Jacobian components J̃ , part of this variation can be compensated by a pseudo-
inverse of J̃ . Then we have:

min
dθ̃
‖F(u, θ + dθ)−F(u, θ)‖ = ‖(I − J̃ J̃+

H)Jidθi‖ = πi|dθi|, (6.2)

where
πi = ‖(I − J̃ J̃+

H)Ji‖ =

√
JTi (I − J̃ J̃+

H)Ji (6.3)

πi indicates how much the system output is sensitive to variations of parameter θi. There-
fore, the bigger πi, the more identifiable θi is.

We calculate πi for i = 1, 2, . . . , 7, for the parameter values given in [5] that are listed
in Table 6.1.

In addition, we investigated the identifiability of the parameters in the presence of
measurement noise. As can be noted, increasing the noise on the measurements, makes
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Parameters Values πi
θ1 (.34)−1 9.43× 10−4

θ2 .54 1.07× 10−2

θ3 .65 5.16× 10−2

θ4 .38 4.31× 10−2

θ5 .98 3.61× 10−3

θ6 .32 5.15× 10−3

θ7 .04 2.33× 10−1

Table 6.1: Sensitivity level for θi

it harder to identify the parameters, whereas in the no noise case, we can almost exactly
identify each parameter, fixing the others. Figure 6.1 shows the sensitivity of the model
output to the change in parameters θ1, θ2, . . . , θ7 when the parameter value varies from 0
to 1 for measurement noise ranging from 0% to 30%.
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From the numerical experiments and the above sensitivity analysis we conclude that,
in order to achieve the unique values of the parameters in the numerical experiments we
need to work with high quality signal, where the signal to noise ratio (SNR) is high [10].
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Figure 6.1: Residul on BOLD signal in the presence of 0%, 5%, 10%, 15%, 20%, 25%,
30% white noise on the measurements when parameters θ1, θ2, . . . , θ7 vary from 0 to 1.

6.2 Parameter Estimation Using Synthetic Data

In this section, we present results of numerical experiments using synthetic data. Two
sets of experiments have been performed. The first set has been particularly done to repli-
cate the result in [24] and the second set has been done to mimic the real data. In each
experiment, we solved the HDS using Runge-Kutta order 4 to generate a synthetic BOLD
signal y. We must point out that the solver used to generate the synthetic data was differ-
ent from the one which was used in the inversion algorithm, in order to avoid the so-called
“inverse crime” [9].

6.2.1 Experiments With A Gaussian Control Input

In this section we used a Gaussian input given by Eq. (4.1) with µ = 25, σ = 6, tf =
60 s,∆t = 1 s and the parameters listed in Table 6.2 to generate the synthetic BOLD sig-
nal. Figure 6.2 illustrates the noise-free generated BOLD signal with the Gaussian control
input. Since in practice the given data is tainted with noise we added 1% − 30% white
noise to the obtained signal. In practice measurements with 30% noise can be considered
as highly noisy data, hence this simulations are performed in extreme situations. Also, to
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Figure 6.2: Synthetic BOLD signal corresponding to the Gaussian control input.

account for the possible noise on the initial state, we considered 5% white noise on ~x0.
For the initial set of parameters, we chose a blind guess of ~θ = [.5] in all the experiments.

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7
Initial guess (.5)−1 .5 .5 .5 .5 .5 .5

Target (.34)−1 .54 .65 .38 .98 .32 .04

Table 6.2: Initial guess and target parameters for synthetic data generation with Gaussian
input.

I. Comparison with CKF: We then compared the performance of the proposed algorithm
RNA-CKF with CKF. As the results from [24] also suggest, CKF performs well when
there is a priori knowledge about the initial value of the parameters available. However, in
the case with blind initial guess CKF fails to provide a satisfactory reconstruction. How-
ever, RNA-CKF gives a good reconstruction for the BODL signal and the parameters and
absolutely outperforms CKF with different level of noise on the measurements and the ab-
sence of a priori knowledge about the parameters (see Figure 6.3). It can also be observed
that RNA-CKF reaches the level of noise on the measurement in all the experiments, while
CKF fails (see Figure 6.6).
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Figure 6.3: Target BOLD signal (Solid-black). Reconstructed BOLD signal using CKF
algorithm (dashed-red) and RNA-CKF (dashed-blue), with 1%,10%,20%,30% white noise
on the measurements.
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Figure 6.4: Target parameters (black). Initial parameters values (white). Reconstructed pa-
rameters using CKF algorithm (red) and RNA-CKF (blue), with 1%,10%,20%,30% white
noise on the measurements.
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Figure 6.5: RNA-CKF convergence history for 1%,10%,20%,30% white noise on the mea-
surements.

II. Comparison with RNA: In the next set of simulations we study the sensitivity of the
proposed inversion algorithm RNA-CKF to the noise on the initial state and compare it to
the result obtained from applying RNA. We considered 1%, 10%, 20%, 30% white noise on
the initial state ~x0 while there is 30% white noise on the measurements. It is observed that
both method provide fairly good reconstruction for the parameters. However, the recon-
structed BOLD signal from RNA shows an initial increase in the signal, which indicates
brain activity at the time when the stimulus has not been applied. On the other hand, the
reconstructed BOLD signal from RNA-CKF algorithm provides a physiologically reliable
output.
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Figure 6.6: Comparing relative error on the computed BOLD signal using CKF and RNA-
CKF, for 1%,10%,20%,30% white noise on measurements.

6.2.2 Experiments With A Square Control Input

In this section we illustrate the result we obtained by employing a more realistic con-
trol input to mimic the real data. We used an On-Off input given by Eq. (4.2) with
t1 = 7 s, t2 = 37 s, tf = 72 s,∆t = 3 s and the parameters ~θ listed in Table 6.3 to
generate the synthetic BOLD signal. Figure 6.10 shows the noise-free generated syn-
thetic BOLD signal. Since the real data seems to be tainted with 5%-7% noise, we added
0%, 5%, 7%, 10% white noise to these measurements to validate the performance of the
proposed algorithm in the presence of noise on the data. Figure 6.12 shows the recon-
structed BOLD signal using RNA-CKF algorithm. It can be observed that RNA-CKF
provides excellent reconstruction for the BOLD signal and the parameters without any
a priori knowledge about the parameters and in the presence of high level measurement
noise. We ran the algorithm using the regularization parameter α = 15.

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7
Initial guess (.5)−1 .5 .5 .5 .5 .5 .5

Target (.45)−1 .6 .4 .15 .4 .3 1.05

Table 6.3: Initial guess and target parameters for synthetic data generation with square
input.

51



0 10 20 30 40 50 60

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (seconds)

B
O

L
D

 m
e
a
s
u

r
e
m

e
n

ts
 (

%
)

 

 

Target

RNA

RNA−CKF

0 10 20 30 40 50 60

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (seconds)
B

O
L

D
 m

e
a
s
u

r
e
m

e
n

ts
 (

%
)

 

 

Target

RNA

RNA−CKF

(a) 5% noise level (b) 10% noise level

0 10 20 30 40 50 60

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (seconds)

B
O

L
D

 m
e
a
s
u

r
e
m

e
n

ts
 (

%
)

 

 

Target

RNA

RNA−CKF

0 10 20 30 40 50 60

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (seconds)

B
O

L
D

 m
e
a
s
u

r
e
m

e
n

ts
 (

%
)

 

 

Target

RNA

RNA−CKF

(c) 20% noise level (d) 30% noise level

Figure 6.7: Target BOLD signal (solid-black). Reconstructed BOLD signal using RNA
(dashed-blue) and RNA-CKF (dashed-magenta), with 5%,10%,20%,30% white noise on
the initial state ~x0.
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Figure 6.8: Target parameters (black). Initial parameters values (white). Reconstructed
parameters using RNA (blue) and RNA-CKF (magenta), with 5%,10%,20%,30% white
noise on the initial state ~x0.
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Figure 6.9: Convergence history for RNA (blue) and RNA-CKF (magenta) with
5%,10%,20%,30% white noise on the initial state ~x0.
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Figure 6.10: Synthetic BOLD signal corresponding to the On-Off control input.

55



0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

1.5

2

2.5

t (seconds)

B
O

L
D

 m
e

a
s

u
re

m
e

n
ts

 (
%

)

 

 

Target

RNA−CKF

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

1.5

2

2.5

t (seconds)
B

O
L

D
 m

e
a

s
u

re
m

e
n

ts
 (

%
)

 

 

Target

RNA−CKF

(a) 0% noise level (b) 5% noise level

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

1.5

2

2.5

t (seconds)

B
O

L
D

 m
e

a
s

u
re

m
e

n
ts

 (
%

)

 

 

Target

RNA−CKF

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

1.5

2

2.5

t (seconds)

B
O

L
D

 m
e

a
s

u
re

m
e

n
ts

 (
%

)

 

 

Target

RNA−CKF

(c) 7% noise level (d) 10% noise level

Figure 6.11: Reconstructed BOLD signal using inversion algorithm RNA-CKF and syn-
thetic data, with 0%,5%,7%,10% white noise on the measurements and no additional noise
on the initial state ~x0. The regularization parameter α = 18.
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Figure 6.12: Reconstructed parameters using inversion algorithm RNA-CKF and synthetic
data, with 0%,5%,7%,10% white noise on the measurements and the regularization param-
eter α = 18 and no additional noise on the initial state ~x0.
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Figure 6.13: Convergence history for RNA-CKF with no noise on ~x0 and 0%,5%,7%,10%
white noise on the measurements.
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Figure 6.14: Reconstructed BOLD signal using inversion algorithm RNA-CKF and syn-
thetic data, with 0%,5%,7%,10% white noise on the measurements and the regularization
parameter α = 18 and 5% noise on the initial state ~x0.
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Figure 6.15: Reconstructed parameters using inversion algorithm RNA-CKF and synthetic
data, with 0%,5%,7%,10% white noise on the measurements and the regularization param-
eter α = 18 and 5% noise on the initial state ~x0.
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Figure 6.16: Convergence history for RNA-CKF with 5% noise on ~x0 and 0%,5%,7%,10%
white noise on the measurements.
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Chapter 7

Parameter Estimation Using Real Measurements: A Finger Tapping Experiment

In this chapter we use the RNA-CKF algorithm to estimate the parameters using the real
fMRI measurements. Two sets of experiments were performed. The first set of exper-
iments were performed with no noise on the initial state, however in the seconds set of
experiments we assume 5% noise on the initial state ~x0. We performed all the experiments
with the raw real data with 25 data points and the enriched data with 720 data points.

7.1 Description of the Data

One male subject was imaged while performing a finger tapping tasks. The study
was approved by the Institutional Review Board (IRB) at Nationwide Childrens Hospital,
Columbus, OH.

Scanning Sequences: fMRI was performed with a 3.0T GE Medical Systems Signal
Excite and the BOLD sensitive T2* weighted echo-planar (EPI) sequence [43] using an
8 channel array head RF coil. Scanning protocol included a screening brain MR scan,
including sagittal T1- weighted and axial T2- weighted scans, to exclude any anatomic
brain abnormality. The task was performed with the following parameters: TE = 35 ms;
TR = 3 s; flip angle = 90◦ single shot; full k-space, 128x128 acquisition matrix with a field
of view (FOV) = 25.6 cm, generating an in-plane resolution of 2 mm2 and slice thickness
of 8 mm with a max total of 20 axial slices. A total of 120 volumes (time points) were
acquired.

Stimulation Protocol: The subject was instructed to begin and stop finger tapping
every 30 seconds. Head motion was restricted by firm cushions packed around the head
and by use of a head strap. The protocol followed a standard block design. The On-Off
cycle was repeated six times for each scanning plane.

Data Processing: fMRI data preprocessing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 5.98, part of FSL (fMRIBs Software Library, www.fmrib.ox.
ac.uk/fsl). Motion correction using MCFLIRT [27], mean-based intensity normaliza-
tion of all volumes by the same factor, and temporal high-pass filtering (using 60 secs) was
then performed on the data as well as spatial smoothing of 5 mm (Gaussian) were applied
as pre-statistics processing. The time series for each voxel was then extracted for further
analysis.
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Figure 7.1: Real BOLD signal with 25 data points (top). Real BOLD signal with 720 data
points (bottom).

The final measurements are over 72 seconds, with 25 data points that is every 3 seconds
one measurement has been taken. Then by using interpolation (interp function in MAT-
LAB) number of measurements have been increased to 720 points that is one measurement
every 0.1 seconds. Figure 7.1 shows the two profiles.

7.2 Numerical Results

We applied the proposed inversion algorithm RNA-CKF to both sets of real measure-
ments. We started by taking the same blind initial guess for ~θ0 from the synthetic data
experiment. We have used the regularization parameter α = 15 for the first set of data and
α = 500 for the second set with 720 data points both obtained through the trial and error
procedure. Figure 7.5 shows the reconstruction for the BOLD signal and the parameters.
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Figure 7.2: Reconstructed BOLD signal using inversion algorithm RNA-CKF and real
measurements with 25 data points using regularization parameter α = 15 (left). Recon-
structed BOLD signal using inversion algorithm RNA-CKF and real measurements with
720 data points with α = 500 (right).
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Figure 7.3: Convergence history for real data with 25 data points using regularization
parameter α = 15 (left). Convergence history for real data with 720 data points using
regularization parameter α = 500 (right).
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Figure 7.4: Reconstructed BOLD signal using inversion algorithm RNA-CKF and real
measurements with 25 data points using regularization parameter α = 15 (left). Recon-
structed BOLD signal using inversion algorithm RNA-CKF and real measurements with
720 data points with α = 500 (right).
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Figure 7.5: Convergence history for real data with 25 data points using regularization
parameter α = 15 (left). Convergence history for real data with 720 data points using
regularization parameter α = 500 (right), with 5% noise on the initial state ~x0.
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Chapter 8

Conclusion

We have investigated mathematically and numerically the problem of estimating the bio-
physiological parameters of the Balloon model from the BOLD signal measurements.
Solving this inverse problem appears to be a prerequisite step for understanding as well as
monitoring brain responses to exogenous stimulus during brain activation.

From a mathematical point of view, we have performed a sensitivity analysis of the brain
responses to the biophysiological parameters of the brain model. In particular, we have
established a uniqueness result that can be viewed as an important step toward establishing
the uniqueness of the solution of the considered inverse problem.

From a numerical point of view, we have designed an efficient solution methodology to
estimate the biophysiological parameters in order to fit the dynamical system output (the
BOLD signal). The main features of this technique are: (a) The regularized Newton algo-
rithm that addresses the nonlinearity and restores the stability of the problem, and (b) The
Cubature Kalman Filtering procedure for treating the noise on the measurements. Unlike
existing methods, our proposed algorithm performs well even in the absence of a priori
knowledge on the initial value of the parameters, as well as in the presence of noise on
the initial state. We have obtained very promising results which demonstrate the robust-
ness and the efficiency of the proposed inverse solver. Additionally, we have successfully
applied our algorithm to calibrate the Balloon model from some measured BOLD signal
extracted from fMRI images corresponding to a finger tapping experiment.

It is worthwhile to observe that the proposed method is conceptually easy to understand
and is fairly straightforward to implement. The algorithm, coded in C, can run on a per-
sonal desktop or a laptop.

As stated in the introduction section, the goal of our research effort is to contribute to
the understanding of brain activity and to provide the required tools to diagnose physical
and psychological diseases at early stages. Our obtained results represent an interesting
progress toward achieving this goal. Nevertheless, there are still many questions that re-
main without answers. Examples of such issues that need to be addressed in the short term
run:

• The uniqueness of the solution of the considered inverse problem which will give
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confidence for accurately targeting the parameters during the calibration process,
especially when the data are contaminated with noise.

• A priori error estimates on the dependence of the state variables with respect to the
parameters. These estimates will help better understand and quantify the sensitivity
of the responses to the changes in the biophysiological parameters.

• Convergence results that are important for making the designed algorithm to be used
in an automatic way. This kind of user friendly software will be then accessible to
physicians and practitioners.
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Chapter 9

Appendix: Brain Imaging with fMRI

Functional magnetic resonance imaging or functional MRI (fMRI) is an MRI procedure
that measures brain activity by detecting associated changes in blood flow. This technique
relies on the fact that cerebral blood flow and neuronal activation are coupled. When an
area of the brain is in use, blood flow to that region also increases. The primary form
of fMRI uses the Blood Oxygen Level Dependent (BOLD) signal discovered by Seiji
Ogawa 1. This is a type of specialized brain and body scan used to map neural activity
in the brain or spinal cord of humans or other animals by imaging the change in blood
flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s,
fMRI has come to dominate brain mapping research because it does not require people to
undergo shots, surgery, or to ingest substances, or be exposed to radiation [26].

The procedure is similar to MRI but uses the change in magnetization between oxygen-
rich and oxygen-poor blood as its basic measure. This measure is frequently corrupted by
noise from various sources and hence statistical procedures are used to extract the under-
lying signal. The resulting brain activation can be presented graphically by color-coding
the strength of activation across the brain or the specific region studied. The technique can
localize activity to within millimeters but, using standard techniques, no better than within
a window of a few seconds. fMRI is used both in the research world, and to a lesser extent,
in the clinical world. It can also be combined and complemented with other measures of
brain physiology such as EEG2 and NIRS3. Some companies have developed commercial
products such as lie detectors based on fMRI techniques, but the research is not believed
to be ripe enough for widespread commercialization [31].

The process starts with a stimulus which causes the neural activation. Following in-
creased neural activity in the brain, the local cerebral blood flow (CBF) increases much
more than the cerebral metabolic rate of oxygen (CMRO2), and as a result local oxygen
extraction fraction (E) decreases with activation [12]. Because the local blood is more oxy-
genated, there is less deoxyhemoglobin present, the magnetic field distortions are reduced,
and the local MR signal increases slightly. This small blood oxygenation level dependent
(BOLD) signal change is the mapping signal used in most functional magnetic resonance

1Seiji Ogawa (January 19, 1934) is a Japanese researcher known for discovering the technique that un-
derlies Functional Magnetic Resonance Imaging (fMRI)

2EEG: Electroencephalography
3NIRS: Near-infrared spectroscopy
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Figure 1: From stimulus to BOLD signal and fMRI image4.

imaging (fMRI) applications [4].

fMRI vs. MRI

If you are having your brain scanned with MRI, you lie on a table with your head
inside a giant magnet. Protons inside the atoms in your brain align themselves with the
magnetic field, only to be whacked temporarily out of alignment by a pulse of radio wave
aimed at your head. As protons relax back into alignment again, they themselves send out
radio waves that a computer uses to create a brain snapshot.

MRI fMRI
Structural Images X X
Functional Images 7 X

3D Images 7 X
Radiation-free 7 X

Shot-free 7 X
No Substances Ingested 7 X

Table 1: fMRI vs. MRI

Whereas with fMRI, researchers rely
on two more facts about the body: the fact
that blood contains iron ( and we know that
the main function of iron is to carry oxy-
gen in the body) the second fact is that
blood rushes to a specific part of the brain
that is activate. As freshly oxygenated
blood zooms into a region, the iron that car-
ries the oxygen distorts the magnetic field
enough for the scanner to pick up the signal
[8]. Therefore in fMRI, patients don’t need
to be exposed to radiation or ingesting substances. Overall, fMRI has many advantages

4Brain image courtesy of Dr. Ned T. Sahin, Multi-Modal Imaging Lab, UCSD.
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Figure 2: fMRI is used to locate activated area in the brain.

over MRI, Table 1 summarizes these properties.

Applications

fMRI has had a major impact in cognitive neuroscience. fMRI now has a small but
growing role in clinical neuroimaging, with initial applications to neurosurgical planning.
Current clinical research has emphasized novel concepts for clinicians, such as the role of
plasticity in recovery and the maintenance of brain functions in a broad range of diseases.
There is a wider potential for clinical fMRI in applications ranging from pre-symptomatic
diagnosis, through drug development and individualization of therapies, to understanding
functional brain disorders. Realization of this potential will require changes in the way
clinical neuroimaging services are planned and delivered [36].

fMRI is being used in areas including but not limited to:

1. Tracking visually guided response

Using fMRI images, scientist can study visually guided responses and detect the
area of the brain related to the visual responses (see Figure 3), so these important
tissues can be avoided during brain surgeries.

2. Pain management studies

Current views recognize the brain as playing a pivotal role in the arising and mainte-
nance of pain experience. Real-time fMRI (rtfMRI) feedback is a potential tool for
pain modulation that directly targets the brain with the goal of restoring regulatory
function. Though still relatively new, rtfMRI is a rapidly developing technology that
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Figure 3: fMRI images show different brain response to different images5.

has evolved in the last 15 years from simple proof of concept experiments to demon-
strations of learned control of single and multiple brain areas [6]. Figure 4 illustrates
the reduced paint related brain activity by using virtual reality during treatments of
burn patients.

3. Risk assessment: Potential role of fMRI is in directing decisions about surgical and
diagnostic procedure.

4. Language generation studies: fMRI was also used to identify candidate language
processing areas in the intact human brain.

5. Complex problem solving.

6. Comprehension of sequential information.

7. fMRI is also used to detect the effect of:

(a) detect the effect of tumors, strokes and brain diseases and how the brain recov-
ers after stroke.

5Source:http://en.wikipedia.org/wiki/Functional\_magnetic\_resonance\
_imaging, accessed January 30, 2013.
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Figure 4: Reduced pain related brain activity6.

(b) head injuries.

(c) psychological disorders such as Alzheimer’s and depression.

(d) drugs and behavioral therapy.

6Image courtesy of Dr. Hunter Hoffman, Human Interface Technology Laboratory, University of Wash-
ington
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