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Abstract

Piecewise linear function fitting is ubiquitous in many signal processing applications. Inspired by 

an application to shear wave velocity imaging in ultrasound elastography, this paper presents a 

discrete state-space Markov model for noisy piecewise linear data and also proposes a tractable 

algorithm for maximum a posteriori estimation of the slope of each segment in the piecewise 

linear function. The number and locations of breaks is handled indirectly by the stochastics of the 

Markov model. In the ultrasound shear wave imaging application, these slope values have 

concrete physical interpretation as being the reciprocal of the shear wave velocities in the imaged 

medium. Data acquired on an ellipsoidal inclusion phantom shows that this algorithm can provide 

good contrast of around 6 dB and contrast to noise ratio of 25 dB between the stiff inclusion and 

surrounding soft background. The phantom validation study also shows that this algorithm can be 

used to preserve sharp boundary details, which would otherwise be blurred out if a sliding window 

least squares filter is applied.

I. INTRODUCTION

Hepatocellular carcinoma is a leading cause of cancer related deaths in both developed and 

developing countries throughout the world [1]. Radiofrequency or microwave ablation is a 

common treatment of smaller tumors especially in patients that are not candidates for liver 

surgery or a transplant. Monitoring the ablation process is paramount to ensure that the right 

volume of liver tissue is treated because untreated cancer cells may cause the tumor to recur.

Ultrasound shear wave velocity (SWV) imaging is gaining popularity as a promising tool for 

differentiating regions of the imaged tissue based on stiffness. In particular, this imaging 

mode can be of immense use for monitoring tumor ablation procedures where clinicians 

must accurately control the size of the ablation to ensure that almost all the cancerous cells 

in the tissue are treated. At a high level, SWV images are produced by tracking a shear wave 

pulse in the imaging plane. Tracking is achieved using the popular “time of arrival” method 

[2] which records the time at which the shear wave pulse arrives at different locations away 
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from the source. The slope of this time of arrival plot is therefore equal to the reciprocal of 

the wave speed, also known as “slowness” [3].

This paper presents a model for noisy piecewise linear data which is applied to the SWV 

estimation problem. Test data is acquired on a tissue mimicking phantom using an electrode 

vibration setup, called electrode vibration elastography (EVE) [6]. This technique is 

minimally invasive in the sense that it requires only the use of small (on the order of a 100 

microns) displacements to be applied to the ablation needle.

II. THEORY

A theoretical model for piecewise linear data is presented in this section. A computational 

algorithm for estimating slopes from noisy data using this model is also discussed. A 

physical interpretation of the model will become apparent in Section III which describes the 

shear wave imaging experiment. It is also worth noting that the slope estimation algorithm 

presented here is general enough to handle piecewise linear data arising in many other 

applications as well.

A. Model for Piecewise Linear Data

It is assumed that the user has a reliable estimate of the minimum and maximum possible 

slope values that can be present in the underlying noiseless data. For instance, in the shear 

wave imaging application there are physical limits on the wave speed in tissues. Hence, 

without loss of generality, it can be assumed that the slopes lie in the unit interval [0, 1]. 

This interval is discretized to M levels so that the “states” for the slope values is the finite set 

. A total of N equidistant data samples are available at 

discrete sampling locations 1 ≤ n ≤ N. A Markov structure is imposed on the sequence Sn of 

slope values as follows. Let S0 have a uniform probability mass function on the set . For n 

≥ 1, let Sn = Sn−1 with probability p, otherwise Sn is chosen uniformly randomly from \

{Sn−1}. The piecewise linear function is realized by accumulating these slopes, i.e. X0 = 0 

with probability 1, and Xn+1 = Xn + Sn+1 for n ≥ 1. Finally, the observed function values 

follow the relation Yn = Xn + Wn where Wn are i.i.d. normally distributed with zero mean and 

(unknown) variance σ2.

The posterior density function of the unknown function values given the data can be easily 

derived by exploiting the Markov structure:

Taking the logarithm, and using the relation  (for i ≥ 1), the maximum a 

posteriori (MAP) estimation problem for the slope values sn can be written as
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(1)

where δ is the Kronecker delta function which evaluates to 1 when the condition in the 

subscript is true and 0 otherwise.

Note that this model is parametrized by two unknown parameters p and σ2 which will affect 

the final result. Intuitively, if p is very close to 1, one expects to see longer runs of constant 

slope values, i.e. a fit with few change points. Moreover, a larger value of σ2 can potentially 

outweigh the second term in the maximization problem (1) resulting in a (trivial) least 

squares line fit. In practice, the value of p can be selected based on the number of slope 

change points one expects to see in the raw data. The value of σ2 can be estimated from the 

raw data by calculating its sample variance after detrending.

B. Slope Estimation Algorithm

The MAP estimation problem can be solved using a Viterbi-like algorithm by traversing a 

trellis of possible slope values at each index 1 ≤ n ≤ N [7]. However, the trellis search can 

become computationally burdensome for large N because of the  term in the 

objective function which depends on all the slope values into the past. An approximate 

optimization is used in this paper in the interest of processing speed. The objective function 

to be maximized is non-differentiable (due to the presence of Kronecker delta functions). 

Moreover, the discrete nature of the problem makes it challenging to use standard 

optimization routines which rely on a “hill climbing” scheme in a continuous space. 

Therefore, it is more convenient to work with a continuous version of the problem by 

approximating the Kronecker delta function using a narrow Gaussian spike δsn=sn−1 ≈ 

e−(sn − sn−1)2/k2
 where k is used to control the width of the spike. Moreover, the slope values 

are now allowed to vary freely in the interval [0, 1]. This leads to the following relaxed 

formulation:

(2)

This optimization is solved using a sequential quadratic programming (SQP) routine, in 

which each constituent quadratic program is solvable in polynomial time [5]. The result is 

then quantized to the set . Although there is no theoretical guarantee that this is in fact 

close to the exact MAP estimate obtained by solving the original problem in (1), the results 

in Section IV on real data indicate that it works well in practice.

III. MATERIALS AND METHODS

A. Tissue Mimicking Phantom

The tissue mimicking phantom used for data acquisition consists of a gel block with oil 

droplets in a gelatin matrix. The stiffness can be controlled by varing the proportion of oil in 
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the matrix; details on the construction of this phantom can be found in the paper by Madsen 

et al. [4]. The phantom contains an ellipsoidal inclusion of higher shear modulus than the 

surrounding background material. A stainless steel needle is firmly glued to the center of the 

inclusion and mimics the ablation needle in an actual tumor ablation procedure. A smaller 

region of intermediate stiffness is present on one side of the inclusion to mimic a partially 

ablated area. A cross-section of the phantom is shown in the top panel in Fig. 1.

B. Shear Wave Generation and Imaging

A shear wave pulse is generated by vibrating the needle vertically using an actuator (Physik 

Instrumente, Germany) and radiofrequency ultrasound echo data is acquired simultaneously 

(Ultrasonix SonixTouch, Canada) using triggered acquisition. A pulse actuation of 100 µm 

amplitude and 20 ms width is used. Pseudo-high frame rate echo data is acquired using a 

phase locked acquisition technique [6] which relies on multiple vibrations of the needle to 

acquire vertical bands of data and assembling these to form complete frames of echo data. A 

linear array transducer with center frequency set at 5 MHz was used. Ten independent 

datasets were acquired for image quality evaluation.

Measurements were also made with a commercial Supersonic Imagine system (Aix-en-

Provence, France) using the clinical shear wave velocity imaging mode (SSI).

C. Data Processing

A one-dimensional crosscorrelation based displacement estimation algorithm is used to 

determine the displacement at each pixel in the image over time (axial 2 mm windows, 75% 

overlap). The peak of the displacement profile at each pixel is used to estimate the arrival 

time of the shear wave front at different locations away from the needle [2]. This produces a 

wave arrival time plot over lines of constant depth as shown in the lower panel of Fig. 1.

The optimization problem in (2) is then solved to fit piecewise linear functions both to the 

left and right sides of the needle along lines of constant depth. k = 10−3 is used to 

approximate the Kronecker delta function with a narrow Gaussian pulse. The value of p = 

0.95 is used (expecting around 5 slope changes per 100 data samples) and σ2 = 1 is used as 

an estimate for the noise variance. Estimated local slope values are then displayed as a 

slowness map. The reciprocal of these slope values are used to generate SWV images1. 

Three different regions of interest (ROI) of size 1 cm × 2 cm are selected in each image and 

three different image quality statistics are calculated. The signal to noise ratio (SNR) is 

defined as SNR = 20 log10(μ/λ), contrast as C = 20 log10(μ1/μ2) and contrast to noise ratio as 

 [8], where μ denotes the mean; λ2 is the sample 

variance calculated over any ROI; and subscripts denote two different ROIs. For 

comparison, a sliding window linear least squares method is also used to estimate shear 

wave velocities. A 7 point moving window is used, and the slope is estimated by fitting a 

line using 3 neighboring data points on either side of each data point. The image quality 

metrics described above are recalculated with this method.

1The final goal of shear wave elastography is to image shear moduli; SWV is only used as a surrogate for stiffness. Alternatively, to 
avoid calculating the reciprocal of noisy data, the slowness image can also be used as the surrogate.
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IV. RESULTS

A B-mode image of the phantom together with the slowness image and SWV image are 

shown in Fig. 2. Note that the three different stiffness areas are easily visible in the B-mode 

image of the phantom because the materials were designed with different acoustic 

echogenicities on purpose. Delineation in actual tissues is not easily noticeable in B-mode. 

High stiffness regions can be clearly visualized with well demarcated boundaries in both the 

slowness and SWV images. The low velocity artifact near the center of the inclusion is due 

to lack of tracking quality in regions very close to the needle. The reconstruction quality 

obtained using the algorithm presented in this paper provides sharper boundary details 

compared to the standard least squares filtering method (Fig. 2(c) vs. (d)).

The estimated SWV using ROIs in 10 different datasets are shown in Table I. These agree 

quite well with the standard least squares method and also with the measurements made 

using SSI. Image quality metrics are shown in Table II. The highest contrast to noise ratio of 

25 dB and contrast of over 6 dB is obtained between the stiff inclusion and soft background 

material. The partially ablated and background regions are the most difficult to discern, even 

visually in Fig. 2 and is also indicated by the lower CNR and C values. The contrast values 

obtained from the least squares filtering method is almost equal to that from the algorithm 

proposed in this paper. The CNR values are much lower with least squares filtering.

V. DISCUSSION AND CONCLUSIONS

This paper presented a stochastic model for piecewise linear functions and applied this 

model to estimate slopes in arrival time plots encountered in electrode vibration based shear 

wave elastography. The algorithm is approximate in that it only solves a relaxed version of 

the full MAP estimation problem. However, results using phantom experiments suggest that 

it provides useful visualization of stiff inclusion boundaries. Quantization of the slope values 

into M user defined bins provides a useful speed vs. accuracy tradeoff. This method can be 

implemented on any commercial ultrasound scanner capable of producing high frame rate 

radiofrequency ultrasound echo data frames.

Note that there are a variety of artifacts present in the SWV images that are specific to EVE. 

The time of arrival estimator is reliable only when the shear wave front travels purely in a 

lateral direction away from an ideal line source (the needle in this case). This assumption 

breaks down in areas above and below the inclusion, which may be the cause for high 

velocity artifacts in these regions. Moreover, the low velocity artifact near the center of the 

inclusion has been consistently observed in previous EVE studies as well. They should not 

pose a serious obstacle in applications because it is more crucial to locate the outer boundary 

as the tissue immediately surrounding the needle is surely completely ablated.
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Fig. 1. 
Cross-sectional view of the phantom is shown with the inclusion, partially ablated region 

and surrounding background material. The needle is used to generate a shear wave pulse 

which is tracked at different locations away from the needle over lines of constant depth. 

This gives a wave arrival time plot. The shear wave velocity is equal to the reciprocal of the 

slope of this plot.
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Fig. 2. 
Results from shear wave velocity reconstruction using approximate stochastic piecewise 

linear fitting. (a) B-mode image of the phantom, (b) slowness map and (c) shear wave 

velocity image obtained by calculating the reciprocal of the slowness image. For 

comparison, a SWV image (d) obtained from a windowed least squares slope estimation 

algorithm is also shown.
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TABLE I

Shear wave velocity estimates

Inclusion Par. Abl. Background

SWV (m/s) 2.73 ± 0.68 1.91 ± 0.53 1.26 ± 0.15

SNR (dB) 15.5 ± 3 12.8 ± 3.6 21.8 ± 3.8

SWV LSQ (m/s) 3.03 ± 0.98 2.11 ± 0.32 1.33 ± 0.32

SWV SSI (m/s) 2.8 ± 1.1 2.3 ± 0.8 1.3 ± 0.4

Estimated mean shear wave velocity and SNR for the three different regions in the experimental phantom obtained are shown. For comparison, the 
shear wave velocities obtained using a 7-point moving average least squares filter (LSQ), and phantom measurements using a commercial shear 
wave imaging system (SSI) are also shown.
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TABLE II

Image quality

Incl./Par.Abl. Par.Abl./Backgr. Incl./Backgr.

CNR (dB) 7.46 ± 6.5 12.1 ± 6.7 25.1 ± 4.7

C (dB) 3.07 ± 1.6 3.67 ± 0.73 6.74 ± 1.8

CNR LSQ (dB) 4.98 ± 2.9 16.1 ± 2.9 15.9 ± 2.6

C LSQ (dB) 3.16 ± 0.6 4.07 ± 0.6 7.23 ± 0.7

Contrast (C), and contrast-to-noise ratios (CNR) (in dB) obtained from shear wave velocity estimates for three pairs of regions are shown. Standard 
deviations shown here are calculated using ten independent datasets, after converting to dB. Corresponding values obtained from a 7-point moving 
average least squares filtering method are also shown.
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