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Abstract— Get-Up-and-Go Test is commonly used for assess-
ing the physical mobility of the elderly by physicians. This paper
presents a method for automatic analysis and classification of
human gait in the Get-Up-and-Go Test using a Microsoft Kinect
sensor. Two types of features are automatically extracted from
the human skeleton data provided by the Kinect sensor. The
first type of feature is related to the human gait (e.g., number
of steps, step duration, and turning duration); whereas the
other one describes the anatomical configuration (e.g., knee
angles, leg angle, and distance between elbows). These features
characterize the degree of human physical mobility. State-of-
the-art machine learning algorithms (i.e. Bag of Words and
Support Vector Machines) are used to classify the severity
of gaits in 12 subjects with ages ranging between 65 and 90
enrolled in a pilot study. Our experimental results show that
these features can discriminate between patients who have a
high risk for falling and patients with a lower fall risk.

I. INTRODUCTION
Human gait parameters are known to contain significant

information about individuals’ physical mobility and partic-
ularly mobility of the elderly who are at risk of falling.
Clinicians have developed methods such as the Get-Up-and-
Go Test (GUGT) [1] for gait analysis and screening of the
elderly. Such methods are able to predict subjects mobility
and determine whether they can walk safely without the risk
of falling. Since these assessments are done frequently, there
is a great need for developing automatic and inexpensive
computer systems capable of performing such assessments
in the home of the elderly.

Different technical approaches and sensors have been pro-
posed for gait assessment. One of the common approaches
is the use of wearable sensors such as accelerometers or
gyroscopes [2], [3]. These devices mostly provide accurate
gait parameters. Besides, not being expensive, having light
weight and being small are other advantages of these sensors.
However, these approaches would need a supervisor to help
subjects wear the sensors and maintain them frequently. As
a result, they are mostly suitable for laboratory purposes
and not preferable for the elderly to use them frequently
at home [4].
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On the other hand vision-based gait analysis systems have
received great attention in recent years [5]. Some of these
systems use regular RGB cameras while some others use
more sophisticated sensors such as the Microsoft Kinect.
In the camera-based systems, usually a calibrated array of
cameras is utilized to provide a 3D representation of the
scene. It has been shown that these methods are capable
of providing an accurate model of the subject. For example
in [6], two calibrated cameras were used to generate a 3D
representation of the scene. Using the 3D model, various gait
features were extracted including: torso angle, thigh angles
and shank angles. However, the need of using more than one
camera and their calibration and alignment issues have made
it difficult to be used as an in-home screening system.

The Kinect sensor provides RGB images, depth range
information and the human skeleton. Using the Kinect sensor
for physical mobility assessment was first presented in [7].
In that proposed method both a stereo-vision system and a
Kinect sensor were used for comparison. In one experiment
gait parameters were extracted using the Kinect depth output.
In the second part, the same parameters were extracted using
the output of the stereo vision system. Finally the results of
both systems were compared with the results of a Vicon
motion capture system. The experimental results showed
that the Kinect sensor measures the gait parameters with a
sufficient accuracy.

Another example is the work reported in [8] where the
skeleton data of a Kinect sensor was utilized for gait analysis.
First some features were extracted from the skeleton data and
were fed to a regression model. After that a state machine
was used to produce desired states such as whether the foot
touches the ground or not. In addition, other features such
as the arm kinematics were measured, which show that a
wide range of parameters can be extracted from the skeleton
data. Nevertheless, they only extracted some features and no
classification results were reported by the authors.

Using Kinect sensor eases the gait analysis and extraction
of standard stride information with high accuracy in the
home environment. Nonetheless, many researchers have fo-
cused on only extracting gait parameters for further analysis
and there are limited works for automatic classification of
subjects’ degree of gait severity [3]. Hence, designing an
inexpensive system that extracts discriminative feature for
accurate classification can be useful in alerting patients and
clinicians without having a supervisor at home. This paper
presents a methodology for classification of people into
two categories, high fall-risk versus low fall-risk, based on
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their performance in the Get-Up-and-Go Test using Kinect
sensor. In our approach, we first use image processing and
computer vision algorithms to extract some desired features
from the human skeleton data provided by a Kinect sensor.
The features include number of steps, average step duration,
and turn duration for gait parameters and distance between
the elbows, angle between the legs, and angles between the
shank and the thigh in each leg (knee angles) for anatomical
parameters. Then using a Support Vector Machine (SVM)
classifier, subjects are classified into those categories.

The rest of this paper is organized as follows. Section II
presents an overview of the Get-Up-and-Go Test and parame-
ters that are considered as abnormalities in physical mobility.
The proposed method using Kinect sensor for automatic mea-
surement and classification of physical mobility is described
in Section III. The experimental results are presented in
Section IV and the paper is concluded in Section V.

II. GET-UP-AND-GO TEST

In terms of physical mobility a person is considered as
independent if certain basic skills can be performed without
any help of others [9]. Get-Up-and-Go Test (GUGT) is
a well-known simple test for mobility assessment which
consists of basic everyday movements [10]. In GUGT a
subject sits on an arm chair, gets up, walks a three meter
path, turns, walks back to the arm chair, and sits back down.
In this test, subjects are asked to perform the task without
any help from other people or objects (unless it is necessary),
and physical mobility of the subject is rated on a scale of
one to five according to the observation of a clinician. The
problem with this method is the imprecision of the scoring
system. A modified version of this test is called Timed Up
and Go test [1]. This test computes a score based on the
time taken by an individual to stand up from an arm chair,
walk a distance of three meters, turn, walk back to the chair
and sit down. Due to the timing, this version is more precise
than the GUGT in scoring physical mobility. In [11], it is
shown that the time score and its variability between test
trials correlates well with the physical mobility.

Using the results of the GUGT and the Timed Up and Go
test, clinicians can give an estimate of the overall muscle
strength and balance of the body which can be used in fall
prediction. Generally these tests show whether people are
safe on their own or not when it comes to their mobility. At
first, each subject sits on an arm chair and is ready to get
up. One mobility indicator is the smoothness of getting up.
When the subject uses any kind of help to get up or when
getting up is not smooth, then it is a sign of abnormality. The
next step is to start walking. Any gap between the time that
the subject gets up and the time that he/she starts to walk
is a sign of stabilizing and is abnormal. When the subject is
walking, several abnormalities can be observed such as slow
gait speed, feet dragging on the ground, deviating from the
straight path, and having severe side to side movements. One
significant part of the task is the turning part. Usually, one or
two steps are enough to make a complete turn. Using more
steps in turning, which corresponds to more turning time, is

a sign of abnormality. In addition, some measurements on
the anatomical configuration such as the angle between legs,
the angles of knees and the distance between elbows, can be
indicators of physical mobility while performing the test. In
this paper, we extracted some of these abnormality indicators
from a Kinect device automatically.

III. AUTOMATIC PROCESSING OF GUGT

In order to measure the human’s physical mobility in the
GUGT, we used a Kinect sensor to capture a video and track
the person’s skeleton model while performing the test. The
Microsoft Kinect sensor contains of an RGB camera, a depth
sensor and a multi-array of microphones. The depth sensor
consists of an infrared laser projector and an IR camera with
the sensing range of 0.8 meters to 4.0 meters which captures
depth images in resolution of 640×480 pixels at 30 frames
per second [12]. It is capable of tracking the skeleton of
one or two people moving within a practical range of 1.2
to 3.5 meters. The provided skeleton consists of 20 joints in
the body with 30 frames per second. Fig. 1 shows a sample
layout and joint indices of the virtual skeleton of the Kinect.

Fig. 1. Layout of the Kinect skeleton data

We collected a video dataset of the elderly people perform-
ing the GUGT while a Kinect sensor captured a video and
tracked the person’s skeleton model. Twelve subjects with
ages ranging between 65 and 90 enrolled in the study. A geri-
atric physician reviewed the videos offline and categorized
these subjects based on their gait movement and severity of
their physical mobility into two categories. The first category
includes patients that are relatively safe on their own with
low fall risk, and the second one includes patients with
high risk of falling that have severe physical mobility issues.
The videos were then processed using image processing and
computer vision algorithms aimed at extracting some features
that were used for classification.

(a) Sitting (b) Walking (c) Turning (d) Walking-back

Fig. 2. A subject performing the Get-Up-and-Go Test



A. Feature Extraction
The Kinect sensor detects and tracks the positions (x, y and

z ) of 20 joints of the human body skeleton. Since the joint
points measured by Kinect can be noisy, we apply a median
filter of size 5 to remove the noises and improve the accuracy
of the measurements. Afterwards, two types of features are
extracted: gait parameters and anatomical parameters.

1) Gait Parameters: In the GUGT a person is instructed
to get up from an arm chair, walk, turn, walk back to the
starting point, and sit back down. The path is automatically
segmented into three phases including: Seated phase, Walk-
ing phase, and Turning phase.

Using the position of the hip joint (point 1 in Fig. 1),
we can measure the distance of the person to the Kinect in
z-direction. When the person is seated, the z-coordinate of
the hip joint (z1) does not change and is at its maximum.
By measuring z1 in consecutive frames from the beginning
of the test, we can extract the seated phase. As the person
starts walking towards the Kinect, z1 decreases and when the
person is turning, z1 is at its minimum (we call this point
as turn point). Fig. 3a shows the position of the hip joint
in z-coordinate (z1), the turn point, and the extracted seated
phases.

Since Kinect is mainly designed to track the human body
when facing to the camera, it cannot recognize the skeleton
of the body well while the person is turning (see Fig. 2c).
The time that a person is turning can be defined as the time
that the person starts to rotate his/her upper part of body to
the time that rotation is done and the subject is ready to walk
back. We used the absolute difference between x-coordinates
of two elbows (|x6 − x10|) to determine the starting and
ending frames of a turn. In other word, when the person
starts turning this difference decreases and when turning is
finished, the absolute difference becomes the same as the
value before turn. Measuring this distance in consequent
frames before and after of the turn point, we can extract
turning phase. Fig. 3b shows |x6 − x10| of a subject, turn
point, and extracted turning phase. Extracting seated and
turning phases, we can consider the frames in between as
walking phases (Fig. 3c).

Based on these three phases, three gait parameters are
extracted. One of the gait parameters in walking phase is the
number of steps that a person takes to perform GUGT. To
detect steps, we used the difference between z-coordinates of
two heels (z15− z19). Extremums of this difference indicate
feet being far from each other and zeros correspond to
feet being next to each other. Fig. 3c shows the difference
between z-coordinates of two heels and the extracted number
of steps (where the difference is zero).

Duration of each step is another feature which is important
in physical mobility measurement. The difference between
z-coordinates of two heels (z15− z19) gives us the starting
frame and the ending frame of each step. For each skeleton
data frame, Kinect provides a time-stamp which is used in
calculating the duration of each step.

Number of steps in turning phase is another gait related
property that contains significant information of the physical

(a) The position of the hip joint in z-coordinate (z1)

(b) The absolute difference between x-coordinates of two elbows (|x6− x10|)

(c) The difference between z-coordinates of two heels (z15− z19)

Fig. 3. The extracted seated, walking and turning phases in a GUGT

mobility. As it was explained before, Kinect cannot recognize
the skeleton of the body while the person is turning. One
approach to overcome this issue is to use another Kinect
to look at the subject from side. This approach demands
synchronization between Kinects which is against the sim-
plicity of the proposed method. The other approach is to
measure the turning time instead of counting the number of
steps. We extracted the turning phase automatically and the
turn duration is calculated based on the time-stamps of the
starting and the ending frames of the turning phase.

2) Anatomical Parameters: The second type of param-
eters for physical mobility assessment is related to the
anatomical configuration of the person while performing
GUGT. Various anatomical measurements can be obtained to
assess the condition of the body. One feature is the distance
between two elbows (joints 6 and 10). The angle between
the legs is another feature that is used here. This angle is
defined as the angle between two vectors connecting joint
1 to 14 and 18. The other extracted features are the right
and left knee angles that are the angles between the shank
and the thigh in each leg. This angle is defined as the angle
between two vectors connecting joint 18 to 17 and 19 for the
left leg and the angle between two vectors connecting joint
14 to 13 and 15 for the right leg. These features are shown
in Fig. 1.

B. Classification

The features described in the previous section are used in
classification of gait via a soft margin C-SVM classifier. The
gait parameters provide us three numerical features for each
sample which are: (1) The number of steps that have been
taken to perform the test; (2) The average duration of steps
in seconds; (3) The turn duration in seconds. These numbers
can be fed into the classifier directly.



The anatomical parameters can be easily measured in each
frame of the skeleton data, but to be used as the input of the
classifier, they should be comparable. In other words, there is
no guarantee that subjects finish the task in the same amount
of the time and hence there are different numbers of features
for each subject in each test. To overcome this problem
we have used the Bag-Of-Words (BOW) [13]. The Bag-Of-
Words or Bag-Of-Features is a simple approach that is com-
monly used in visual object classification, text categorization,
etc., where there are different number of features for different
samples. Assume there are {N1,N2, ...,Nk} various number
of features for k samples, this model represents those features
in M keywords where in this paper M�{N1,N2, ...,Nk}. For
this purpose, first a clustering algorithm is used to cluster all
training samples features to M clusters. Each cluster is known
by its center. Each feature of each sample is assigned to one
of these centers, and then for each sample, the histogram of
the features in these clusters represents new M dimensional
features of the sample. This M dimensional output along with
the three gait parameters are fed into the classifier.

IV. EXPERIMENTAL RESULTS

The Kinect sensor was mounted on a table with an
approximate height of 120cm. As the maximum practical
range of Kinect sensor is 3.5 meters [12], and we want Kinect
to view the whole body during the test, the arm chair was
located at a distance of approximately 3.5 meters to Kinect
and subjects walked a path of approximately two meters
instead of three meters in original GUGT. Subjects, with
their normal clothes, were instructed to first sit on the chair,
stand up and start walking for two meters, then turn in place
and walk back to the chair and sit back down. They were
asked to walk completely normally during the test.

We measured the accuracy of the proposed classification
technique on the dataset of 12 elderly patients collected at the
clinic. Among those 12 patients, five subjects are categorized
as low risk of falling and seven of them had high fall risk
by an expert physician. Each patient repeated the test three
to six times (each time is called a sample). A total of 50
samples were captured. We have used K-means clustering
to cluster the anatomical parameters for the Bag-Of-Words
and a C-SVM with radial basis kernel for classifying. K-
means requires the number of clusters (K) to be defined
which corresponds to the number of words in BOW. We
evaluated the algorithm using 4 to 24 clusters, and it turned
out that 10 clusters gave us the best classification rate.

To measure the performance of the proposed classification,
we used a leave-one-subject-out technique. Particularly, the
classifier is trained with samples of all subjects except one
subject. For testing, the classifier classifies all samples of the
left out subject. Every time one subject is left out and the
training and testing procedure are repeated till all subjects are
covered. Finally, the accuracy of the classification is reported
as the average of samples being classified correctly. As K-
means takes random initial clusters, BOW may generate
different features each time which may affect the classifi-
cation performance. We repeated the whole procedure ten

times and on average the classification accuracy is 67.40%
with standard deviation of 4.72%. Table I shows the average
confusion matrix of the classification.

TABLE I
CLASSIFICATION CONFUSION MATRIX

Low Risk High Risk
Low Risk 16.2 7.8
High Risk 8.5 17.5

V. CONCLUSION AND FUTURE WORK

Results suggest that the classification method and features
we designed provide an effective means of distinguishing
patients who have a high risk for falling from patients with
a lower fall risk. This inexpensive, easy to use, Kinect sensor-
based approach can easily be used in the subject’s home or by
lower skilled healthcare personnel and relayed to a physician
to further investigate as appropriate.

In this paper, we extracted only three gait parameters.
Using depth data as well as skeleton tracking, we can extract
more complicated gait parameters indicating abnormality in
physical mobility such as smoothness of getting up, using
any kind of help to get up, and feet dragging on the ground.
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