
HAL Id: hal-01096190
https://hal.science/hal-01096190

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving single-trial detection of event-related
potentials through artificial deformed signals

Hubert Cecotti, Bertrand Rivet

To cite this version:
Hubert Cecotti, Bertrand Rivet. Improving single-trial detection of event-related potentials through
artificial deformed signals. EMBC 2014 - 36th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, Aug 2014, Chicago, United States. pp.4115 - 4118,
�10.1109/EMBC.2014.6944529�. �hal-01096190�

https://hal.science/hal-01096190
https://hal.archives-ouvertes.fr


Improving single-trial detection of event-related potentials through
artificial deformed signals

H. Cecotti1, B. Rivet2

Abstract— To propose a reliable and robust Brain-Computer
Interface (BCI), efficient machine learning and signal process-
ing methods have to be used. However, it is often necessary to
have a sufficient number of labeled brain responses to create a
model. A large database that would represent all of the possible
variabilities of the signal is not always possible to obtain,
because calibration sessions have to be short. In the case of BCIs
based on the detection of event-related potentials (ERPs), we
propose to tackle this problem by including additional deformed
patterns in the training database to increase the number of la-
beled brain responses. The creation of the additional deformed
patterns is based on two approaches: (i) smooth deformation
fields, and (ii) right and left shifted signals. The evaluation is
performed with data from 10 healthy subjects participating in
a P300 speller experiment. The results show that small shifts of
the signal allow a better estimation of both spatial filters, and a
linear classifier. The best performance, AUC=0.828± 0.061, is
obtained by combining the smooth deformation fields and the
shifts, after spatial filtering, compared to AUC=0.543± 0.025,
without additional deformed patterns. The results support the
conclusion that adding signals with small deformations can
significantly improve the performance of single-trial detection
when the amount of training data is limited.

I. INTRODUCTION

Brain-Computer Interfaces require improvements in differ-
ent areas to be more suitable for both healthy and disabled
people. Since the early work of the P300 speller [1], different
improvements have been proposed for optimizing the clas-
sification of event-related potentials (ERPs) responses [2],
[3], the number of repetitions of the visual stimuli [4], [5],
the graphical user interface, the number of sensors [6], and
the reduction of the calibration session [7]. The later point
is the focus of this study. For reducing the duration of the
calibration, a typical step is to optimize the duration of a
session, e.g., to reach a plateau in the steep learning curve
of the model. For a P300 speller, the goal is to find the best
trade-off between the number of characters to spell during
the calibration session, and the obtained performance during
the test. At the start of a session, for a calibration session, an
efficient representation of the model that is able to classify
different brain responses has to be created. While this model
can be tuned and improved over time, thanks to the analysis
of the outputs from the application and/or the monitoring of
the current neural activity [8], it is an advantage to start with
a model that is able to give a good performance.

The goal of single-trial detection of ERPs is to estimate
a function that aims at minimizing the variability of signals

1 School of Computing and Intelligent Systems, University of Ulster,
Derry, Northern Ireland, UK. h.cecotti@ulster.ac.uk

2 Gipsa lab UMR 5216 CNRS, Grenoble Universities, Saint Martin
d’Heres, France.

from the same type of ERPs, and to maximize the difference
between two signals of different types of ERPs. To create
this model, we can distinguish two approaches. First, the
method is adaptive. It follows the evolution of the non-
stationary neural activity over time and estimates its changes.
Second, the method is invariant to the deformations. It can
be achieved with features that are invariant to the intra-
class variabilities of the signal, e.g., after spatial filtering [9],
[10], or by creating a classifier that is able to absorb all the
possible intra-class variabilities with the appropriate training
database.

For the improvement of BCI based on the detection
of ERPs, it is critical to reduce the calibration time for
estimating efficient detection models. However, reducing the
calibration time implies the reduction of the available training
data for tuning a classifier. By reducing the size of the
training data, it is more likely to have an impact on the
model estimation. To avoid such a pitfall, we propose to
add deformed patterns to increase the size of the database,
and to create a model invariant to small deformations. This
technique requires a prior knowledge of the problem. The
approach has been successfully used in other problems such
as handwritten character recognition, where it was observed
that small deformations (rotations, shift, small distortion)
would not affect the label of the pattern [11]. The addition of
deformed patterns can have two purposes: first, to increase
the size of the database to improve the performance of the
model; second to increase the possible variability that can
be modeled by the classifier. Whereas it is relatively easy to
estimate deformations that do not change the class of images
that contain shapes easy to discriminate, it is more difficult
to estimate alternative deformations for ERPs. However,
studies in cognitive neuroscience, and particularly about
the P300 ERP component indicate relationships between
ERP characteristics (amplitude and latency), and behavioral
traits [12]. For instance, the latency of P300 corresponds
to stimulus evaluation time [13]. The latency of the P300
is often associated to the reaction time. Its peak latency is
assumed to be proportional to stimulus evaluation timing, and
is sensitive to task processing demands. In addition, it can
vary with individual differences in cognitive capability [14].
The remainder of this paper is as follows. First, the artificial
deformations of the signal are proposed in Section II. Then,
the methods and the experimental protocol are details in
Section III. Finally, the results are analyzed and discussed
in Section IV and V.



II. TRANSFORMATIONS

We consider a trial, X ∈ RN1×Ns , for the response
corresponding to the presentation of a visual stimulus (target
or non-target), where N1 is the number of sampling points,
and Ns is the number of electrodes. We denote by si,j ,
the standard deviation of the feature X(i, j) across all of
the trials of its corresponding class (target or non-target).
We propose two deformations for the creation of additional
patterns in the training database. In the first deformation,
F1, we create random deformation fields of size N1 × 1,
with values between -1 and 1. The vector of deformation is
filtered with a Gaussian filter (n=3, σ=4). Then, the vector
of deformation is amplified by si,j on each feature, and the
resulting vector is added to X . The second deformation,
F2, is simply a shift of one sampling point of all the trials
from the training database (shifts are applied left and right).
In the experiments, we compare the performance obtained
with different training databases. We denote by Dnull the
database that contains only the recorded trials. D1 and D1

represent the training database containing both the data from
Dnull, and the additional deformed patterns from F1 and F2,
respectively.

III. METHODS

A. Experimental protocol

Ten healthy subjects (age=25.5 ± 4.4 years old, three
females) participated to a P300 speller experiment. Each
subject had to spell a total of 40 characters. Each subject
observed the same sequence of characters. The matrix of
the P300 speller is 6 × 6 and displayed on a 27 inches
LCD screen with a brightness of 375cd/m2. Subjects were
sitting on a chair at about 60cm from the screen, in a non
shielded room. The stimulus onset asynchrony (SOA) was
set to 133ms, and the inter-stimulus interval was 66ms. The
sequence of stimuli on the rows and columns of the speller
were repeated 10 times.

B. Signal acquisition

Electrodes were placed according to a subsampled version
of the 10-10 system. The EEG signal was recorded on O1,
O2, P3, P4, P7, P8, PZ and FCZ . F7 and F8 were dedicated
to the ground and the reference, respectively (Fig 1). The
amplifier is a FirstAmp (Brain Products GmbH) with a
sampling frequency of 2kHz. To match real application, all
of the trials were considered, and no specific artifact rejection
technique was applied.

C. Signal processing

The experimental protocol suggests the presence of a P300
in the brain response corresponding to the presentation of
stimulus on a target. Thus, the signal could be analyzed
between the beginning of the visual stimulus and less than
one second after its beginning. The signal is first bandpassed
filtered (Butterworth filter of order 4) with cutoff frequencies
at 1 and 10.66Hz. Then, the signal is downsampled to obtain
a signal at a sampling rate equivalent to 25Hz. For the
following steps, we used the observed signal over 640ms

Fig. 1. Electrode placement in the international 10-10 system [15].

after the start of a visual stimulus, which corresponds to 16
sampling points (Ne = 16).

The next step consisted of enhancing the relevant signal
using the xDAWN spatial filtering approach [16], [17], [6]. In
this method, spatial filters are obtained through the Rayleigh
quotient by maximizing the signal-to-signal plus noise ratio
(SSNR). The result of this process provides Nf spatial
filters, that are ranked in terms of their SSNR. For the
classification, the first four spatial filters were used. The
Bayesian linear discriminant analysis (BLDA) [18], [19]
classifier is considered for the detection, with the first four
spatial filters as input, resulting to 64 features as the inputs
of the classifier.

For the evaluation, we consider a five-fold cross validation
procedure with two conditions. In the first condition (C1),
one block is used for training, and the remaining four
blocks are used for the test. In the second condition (C2),
it is the opposite, four blocks are used for training, and
one block is used for the test. Each block contains 160
patterns corresponding to the presentation of a target, and
640 patterns for the presentation of non-target (a block is
equivalent to the trials obtained for spelling eight characters).
Classifier performance is evaluated by using the area under
the receiver-operator characteristic (ROC) curve (AUC).

IV. RESULTS

The results are presented for condition C1 and C2, with
and without spatial filtering. When spatial filtering is used,
the AUC is also given for when F2 is applied on the training
database before estimating the spatial filters.

The performance for single-trial detection, without con-
sidering the technique D2 to estimate the spatial filters, is
depicted for both conditions C1 and C2 in Fig. 2. The largest
difference of performance across the databases with de-
formed patterns is observed in C1, as this condition has few
training trials for estimating the parameters of the classifier.
Without the addition of deformed patterns, for C1, the mean
AUC is 0.543±0.025. With D1, D2, and D1+2, the AUC is
0.619±0.113, 0.767±0.121, and 0.828±0.061, respectively.
With only eight spelt characters, the typical approach does



(a) C1 (b) C2

Fig. 2. AUC for each subject and each condition, without D2 for estimating spatial filters. The error bars indicate the standard errors.

not allow to create a model to correctly classify trials
corresponding to targets, versus trials corresponding to non-
targets, as the performance is only 0.543, just above chance
level. However, with the addition of D1+2, the AUC of 0.828
shows that it is possible to obtain a reliable performance. A
repeated measures analysis of variance (ANOVA) confirmed
a difference across the training conditions (F (3, 9) = 51.29,
p<10e-9). Pairwise t-test comparisons indicate that the main
source of difference is due to D2 that allows the main
improvement. For C2, the mean AUC is 0.838±0.072. With
D1, D2, and D1+2, the AUC is 0.833±0.074, 0.866±0.052,
and 0.863± 0.052, respectively. With D1+2, the mean AUC
only increases from 0.838 to 0.863. The repeated ANOVA
also confirmed a difference across the training conditions
(F (3, 9) = 12.16, p<10e-5). In addition, those results
show that the performance is slightly equivalent between
a calibration session with eight characters and deformed
patterns, and a calibration session with 32 characters.

When the D2 is used for the estimation of the spatial
filters, the results are equivalent to when it is not used
and follow the same pattern of performance. The results
are depicted in Fig. 3. Particularly, the performance for the
condition C1 is 0.539± 0.027 for Dnull, 0.623± 0.113 for
D1, 0.765± 0.125 for D2, and 0.827± 0.061 for D1+2. For
C2, the performance is 0.839±0.072, 0.833±0.074, 0.866±
0.052, and 0.863 ± 0.052 for Dnull, D1, D2, and D1+2,
respectively. The results show that D2, which has the main
effect on the classifier, does not provide any improvement
for the spatial filters estimated with the xDAWN framework.

Finally, the performance that is obtained without spatial
filtering is depicted in Fig. 4. The pattern of performance is
similar to the previous experimental conditions, i.e., , there
is an increase of performance with the addition of the shifted
patterns. With C1, the AUC is 0.689±0.084, 0.687±0.084,
0.761 ± 0.051, and 0.762 ± 0.050 for Dnull, D1, D2, and
D1+2, respectively. By considering a larger training database
with C2, the AUC is 0.766± 0.060, 0.765± 0.061, 0.796±
0.046, and 0.796± 0.046. Without spatial filtering, and with
a large training database, the increase of performance with
D2 is not as important as when spatial filtering is used.

V. CONCLUSION AND DISCUSSION

In this study, we have shown how a training database
can be extended through artificial deformations of the EEG
signal after spatial filtering. Thanks to the addition of new
patterns in a database, single-trial detection performance can
be significantly improved when the number of available trials
in the database is limited. We have shown that with only a
training session that contains 8 characters, it was possible
to achieve performance almost equivalent to training session
that are four times longer. The proposed approach can be
an alternative to solutions that search invariant features. By
trying to provide to the classifier a maximum number of
representative trials, it is possible to increase the performance
of the classifier. With the chosen sampling rate of 25Hz, we
have shown that adding shifted trials of one sampling point,
which corresponds to 40ms, it was possible to increase the
performance of the classifier. While it could be assumed
that a jitter in the stimulus onsets can be an obstacle for
the estimation of a model for single-trial detection, we have
shown that the addition of shifted patterns was beneficial.
By comparing two conditions with a different number of
patterns for the training and the test, we have shown that the
performance can completely change and lead to a different
conclusion on the expected performance for a BCI user.
Furthermore, the parameters for the creation of the smooth
deformed fields D1 were not optimized, other parameters
may provide better results. Further investigations on the
spatial projection of the ERPs, and the variability of their
amplitudes and latencies, could provide key insight on how
artificial ERPs could be generated.
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[2] H. Cecotti and A. Gräser, “Convolutional neural networks for P300
detection with application to brain-computer interfaces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 433–445,
2011.

[3] A. Rakotomamonjy and V. Guigue, “BCI competition iii : Dataset ii
- ensemble of SVMs for BCI P300 speller,” IEEE Trans. Biomedical
Engineering, vol. 55, no. 3, pp. 1147–1154, 2008.
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