Abstract:
This work reports on integrated passive-flow optical microfluidic devices to detect waterborne pathogens in the field. Ring-shaped organic photodiodes were integrated to ...Show MoreMetadata
Abstract:
This work reports on integrated passive-flow optical microfluidic devices to detect waterborne pathogens in the field. Ring-shaped organic photodiodes were integrated to a capillary-induced flow microfluidic channel for monitoring chemiluminescent sandwich immunoassays enhanced by gold nanoparticles. The integrated device yielded a resolution of 4×104 cells/mL for the detection of Legionella pneumophila, which represented a 25-fold improvement over chemiluminescence detection devices employing no gold-nanoparticle enhancement. This work demonstrates the feasibility of a low-cost but highly sensitive lab-on-a-chip device amenable for point-of-use applications.
Published in: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Date of Conference: 26-30 August 2014
Date Added to IEEE Xplore: 06 November 2014
Electronic ISBN:978-1-4244-7929-0
ISSN Information:
PubMed ID: 25570970