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Abstract

Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and 

management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant 

on experts who are in short supply, there is a great need for automated spike detectors. However, 

attempts to develop general-purpose spike detectors have so far been severely limited by a lack of 

expert-annotated data. Huge databases of interictal discharges are therefore in great demand for 

the development of general-purpose detectors. Detailed manual annotation of interictal discharges 

is time consuming, which severely limits the willingness of experts to participate. To address such 

problems, a graphical user interface “SpikeGUI” was developed in our work for the purposes of 

EEG viewing and rapid interictal discharge annotation.

“SpikeGUI” substantially speeds up the task of annotating interictal discharges using a custom-

built algorithm based on a combination of template matching and online machine learning 

techniques. While the algorithm is currently tailored to annotation of interictal epileptiform 

discharges, it can easily be generalized to other waveforms and signal types.

I. INTRODUCTION

Interictal discharges [1] are essential in the diagnosis and management of epilepsy. 

However, they are difficult to detect in a consistent manner. Attempts have been made to 

create automatic systems and algorithms [2], [3], [4], which are not fully tested nor accepted 

universally. The biggest hurdle to achieving a strong algorithm for detection is the lack of a 

sufficient database of annotated EEG records.

There are many ways we could go about establishing a foundation for this problem. We 

could have a number of experts manually create a database. However, detailed manual 

annotation of interictal discharges is slow and boring, especially for records with many 

interictal discharges (several thousands per hour), which severely limits the willingness of 
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experts to participate. Alternatively, we could employ an existing detection system supplied 

commercially to create a database. But the sensitivity and specificity of these systems are 

poorly documented. As a result, we would not be able to use this as anything approaching a 

gold standard.

To this end, we have come up with a hybrid approach to reduce the labor and speed the 

process of acquiring expert annotations of EEG data. It is a MATLAB-based graphical user 

interface, named “SpikeGUI”, which is designed for EEG viewing, and rapid interictal 

discharge annotation. It is based on the observation that, within patients, interictal discharges 

tend to be fairly stereotyped, which suggests that selecting one example as a template can 

enable instantly and automatically extracting many more candidate matches, which can then 

be rapidly accepted or rejected by an expert. The rapid vote/feedback in turn suggests that 

annotation can be further speeded up by being cast into an online learning task, which 

provides progressively higher recommendations.

“SpikeGUI” is a full-featured EEG viewer that is designed to be easy to use and allow for 

high speed viewing. “SpikeGUI” employs a custom-built signal processing algorithm 

consisting of template matching [5] and online machine learning [6] to ensure rapid 

interictal discharge annotation.

This paper is organized as follows. In section II, we briefly discuss our scalp EEG data and 

techniques involved in “SpikeGUI”. In section III, validation and annotation results are 

presented, and in section IV concluding remarks and recommendations for future work are 

offered.

II. Materials and Methods

A. Epileptic Scalp EEG

We consider here data from 303 patients with known epilepsy who underwent scalp EEG 

recording at MGH with international 10-20 system of electrode placement. In each case, a 

30-min EEG record with 19 scalp electrodes was used. EEG recordings were down-sampled 

to 128Hz, and band-pass filtered between 0.1 and 64Hz. A notch filter was applied to 

remove the 60Hz power-line interference.

B. Rapid Interictal Discharge Detection

There are 2 major techniques involved in rapid interictal discharge detection: template 

matching and online machine learning. Template matching is applied to generate a list of 

interictal discharge candidates based on the z-normalized Euclidean distance computed with 

respect to a given interictal discharge template. Online machine learning is used afterwards 

to refine the ranking in the list for further selection.

1) Template Matching—Template matching (TM) [7], [8] is carried out based on the z-

normalized Euclidean distance. Euclidean distance between 2 samples  denoted 

by ∥p − q∥ is computed as:
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(1)

It is commonly used to measure the similarity between samples. For each record, a distance 

look-up table (LUT) is computed beforehand with respect to the same reference randomly 

selected. To reduce computational complexity, the triangle inequality [8], [9] is applied to 

reject samples far away from the given template as shown in Fig. 1, and narrow down the 

range of search to a small group of samples. The accepted samples are further ranked 

according to the Euclidean distance to the given template in ascending order.

2) Online Machine Learning—Online machine learning (OML) is a model of induction 

that learns sequentially [10]. OML is applied after TM to further refine the ranking in the list 

of candidate waveforms. The key defining characteristic of OML is that the true label of the 

instance is revealed soon after the prediction is made, to refine the prediction hypothesis for 

future trials. Due to continual label feedback, the online learning algorithms are able to 

adapt and learn in difficult situations.

The goal of the algorithm is to minimize some performance criteria which are algorithm 

specific. In this paper, the MATLAB-based toolbox LIBOL [11] is applied to provide a 

collection of various OML algorithms. Specifically, the second formulation of “Soft 

Confidence-weighted learning” (SCW-II) [10] is selected as our OML algorithm with the 

best performance, which will be explained in detail in Section III.

Mathematically, at time step t, SCW-II receives the incoming sample xt, and predicts its 

label . The true label yt is then revealed and the loss  is determined. Assuming a 

Gaussian distribution of weights with mean μ and covariance Σ, the loss function of SCW is 

defined as:

(2)

with θ denoting the inverse of the cumulative function of the normal distribution. The 

optimization problem can be written as:

(3)

with DKL denoting the Kullback-Leibler divergence [12], C the parameter to tradeoff the 

passiveness and aggressiveness. The closed-form solution of the optimization problem in 

Eqn. (3) is:

(4)

with αt, βt denoting the updating coefficients. The detailed proofs can be found in [10].

In our work, multiple time and frequency features relevant to interictal discharges are used 

for training OML: (i) peak and (ii) peak-to-trough values, (iii) steepness (defined as the time 
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taken to drop from the maxima to its 25% ), (iv) variance, and (v) power in frequency band 

between 20 to 80Hz. Features (i)-(iv) are extracted from the smoothed nonlinear energy 

operator (sNLEO) [13] of the waveform, while feature (v) is obtained directly from the 

waveform itself.

C. The “SpikeGUI” System

The “SpikeGUI” graphical user interface (GUI) consists of two sub-GUIs: the navigation 

GUI (Fig.2) for EEG viewing and annotation; and the minor GUI (Fig.3) to display the list 

of candidate waveforms located by TM+OML.

After importing the EEG recording, it is shown in the navigation window along with 

previous annotations if any. Basic navigation functions are available such as shifting along 

time either at different step size (5s or 10s) or via a swift slider, amplitude scaling up/down, 

montage swap (monopolar, common average, and bipolar), and manual annotation. The 

button “Auto-Template Match” is meant for the core algorithm for rapid annotation, i.e., TM

+OML. To execute this function, one has to manually select an interictal discharge template 

by left clicking the mouse at the interictal discharge (right clicking to un-select) before 

pressing the button. A list of SpikeGUI-recommended waveforms with respect to the 

template will pop up immediately for further selection (See Fig. 3).

The waveforms are ranked according to the similarity to the template resulting from TM

+OML in descending order. Interictal discharges newly selected will be annotated 

automatically in the navigation window as shown in Fig. 2. Apart from navigating along 

time with fixed time step-size or sliders, interictal discharges annotated can be reviewed by 

buttons “previous spike” and “next spike”, which jumps directly to the nearest (±1) interictal 

discharge marker found in the record. Annotation status in terms of total current interictal 

discharge count and OML classification rate are shown at the top for the purpose of 

supervision.

“SpikeGUI” creates an individual record for each user, and allocates memory to export and 

store interictal discharge markers instantly. One can cease in the middle of annotation and 

come back to start from where one left off before. It also allows to load and view markers 

from others. With easy and quick addition and deletion of discharge markers, “SpikeGUI” 

becomes a handy tool for Ground Truth Generation, i.e., the markers have to be agreed by 3 

experts simultaneously, which is crucial for developing and validating detection algorithms. 

“SpikeGUI” is written in MATLAB® [14] and distributed using a run time compiler freely 

available from The Mathworks. “SpikeGUI” can be run on both Windows and Linux OS.

III. Results

In this work, we developed an algorithm for efforts to annotate epileptiform discharges in 

clinical EEG recordings. It is based on the observation that, within patients, interictal 

discharges tend to be fairly stereotyped, i.e., close in z-normalized Euclidean distance. It 

suggests that selecting one example as a template can extract many more matches rapidly 

(see Fig. 4).
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Although fast, TM has its own drawbacks, resulting in occasional bad ranking in the list of 

waveforms (see Fig. 5). Simple Euclidean distance may not be adequate to represent the 

similarity and reveal the important morphological patterns of the interictal discharges, 

especially the main peaks. It may lead to low acceptance rate and consequentially slow 

down the annotation process.

With feedback from the user, the annotation can be cast into an OML task. By continuously 

learning from previous annotations, the current ranking in the list can be refined by applying 

OML (see Fig. 5). To choose the proper OML algorithm, benchmark experiments were 

carried out with 14 different OML algorithms: Perceptron [15], RAMMA and agg-RAMMA 

[16], OGD [17], PA- I and PA-II [18], SOP [19], CW [20], IEL-LIP [21], NHERD [22], 

AROW [23], NAROW [24], SCW-I and SCW-II [10], using 100 interictal discharges and 

100 non-interictal discharges from the same record. As shown in Fig. 6, “SCW II” 

outperformed the others with the lowest mistake rate, less no. of updates, and relatively low 

time cost.

To study the annotation speed of “SpikeGUI” in different scenarios, we had 3 experts 

annotate the same record (with 900+ interictal discharges) using “SpikeGUI” with manual 

annotation alone, TM alone, and TM with OML. The time costs are summarized in Tab. I.

IV. CONCLUSIONS

In this work, we developed a MATLAB-based graphical user interface “SpikeGUI” for rapid 

interictal discharge annotation. “SpikeGUI” employs a custom-built signal processing 

algorithm toward automated EEG analysis, consisting of techniques such as template 

matching and online machine learning. While the algorithm is currently tailored to 

annotation of interictal epileptiform discharges, it can easily be generalized to other 

waveforms and signal types.

We have already extracted 35000+ interictal discharges from 303 patients, and the number 

continues to grow. With the database built at hand, we will push the project to develop a 

general-purpose interictal discharge detector in the near future.
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Fig. 1. 
The triangle inequality to reject samples outside the accepted region (a > r); with O denoting 

the reference for LUT computation, P the sample, A the template, (a, b, c) the sides of 

ΔOPA, and r the radius of accepted region.
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Fig. 2. 
A labeled screenshot of the navigation window of “SpikeGUI”. The EEG recordings are 

displayed with old markers if any: interictal discharges are labeled in red with pink 

background, and baselines are marked by pairs of magenta-green lines. Manual selection/

annotation of interictal discharges/backgrounds can be easily done by left clicking the 

mouse at the target (right clicking to un-select). The current template manually selected is 

labeled in red with yellow background.
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Fig. 3. 
List of candidate waveforms for further selection by checking radio buttons. The waveforms 

are ranked in a descending order of similarity to the template.
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Fig. 4. 
Percentage histograms of z-normalized Euclidean distance of interictal discharges (red) and 

randomly selected segments (blue) extracted from the same record.
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Fig. 5. 
OML improves the ranking: (left) suboptimal ranking by TM alone; (right) improved 

ranking due to OML.
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Fig. 6. 
Comparison of various OML algorithms; with performance criteria (a) cumulative rate of 

mistake, (b) cumulative no. of updates, and (c) cumulative time cost vs. the no. of samples.
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TABLE I

Time costs of annotation experiments in different scenarios: manual annotation, TM alone, and TM with 

OML.

Manual TM TM+OML

Expert 1 180 min 80 min 40 min

Expert 2 150 min 85 min 50 min

Expert 3 200 min 90 min 55 min
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