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Abstract

Pattern recognition in tissue biopsy images can assist in clinical diagnosis and identify relevant 

image characteristics linked with various biological characteristics. Although previous work 

suggests several informative imaging features for pattern recognition, there exists a semantic gap 

between characteristics of these features and pathologists’ interpretation of histopathological 

images. To address this challenge, we develop a clinical decision support system for automated 

Fuhrman grading of renal carcinoma biopsy images. We extract 1316 color, shape, texture and 

topology features and develop one vs. all models for four Fuhrman grades. Our models are highly 

accurate with 90.4% accuracy in a four-class prediction. Predictivity analysis suggests good 

generalization of the model development methodology through robustness to dataset sampling in 

cross-validation. We provide a semantic interpretation for the imaging features used in these 

models by linking features to pathologists’ grading criteria. Our study identifies novel imaging 

features that are semantically linked to Fuhrman grading criteria.

SECTION I. Introduction

Pathological analysis of tissues is an important step for cancer diagnosis and treatment. 

Traditionally, pathologists examine specimens under microscopes and make judgments 

based on deviations in cellular structures, change in the distribution of cells across the tissue, 

and clinical information about the patients being treated. However, this process is time-

consuming, subjective and inconsistent due to inter-and intra-observer variations [1]. 

Therefore, computer-aided histological image classification systems are highly desirable to 

provide efficient, quantitative, and reliable information for cancer diagnosis and treatment 

planning. The computer-based detection and analysis of cancer tissue represents a 

challenging, yet unsolved task because of the large volume of patient data and their 

complexity [2]. The goal of predictive modeling is to construct models that make sound, 

reliable predictions and help physicians improve their prognosis, diagnosis or treatment 

planning procedures. However, there are many challenges facing computer-based decision 

making in clinical medicine. One important challenge is a semantic gap, the lack of 

biological interpretation of quantitative image features [3]. Because of the semantic gap, 

decision support systems act as a black box for pathologists and are more susceptible to 

errors. The purpose of our work is to develop an accurate computer-based decision support 
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system for renal carcinoma grading and identify important image features contributing to 

high grading accuracy. We discuss relationships of these image features with underlying 

biological features. With this work, we hope to reduce the semantic gap between 

pathologists’ knowledge and informative image features.

SECTION II. Background

The grading schema of renal cell carcinoma is based on the microscopic morphology of a 

hematoxylin and eosin (H&E) stained neoplasm. The most widely used schema is a nuclear 

grading system described in 1982 by Fuhrman et al. [4]. Pathological samples are classified 

by their disease stage, tumor size, cell arrangement, cell type, and nuclear grade. Four 

nuclear grades (1–4) are defined in order of increasing nuclear size, irregularity, and 

prominence (Fig. 1).

Nucleoli and other morphological features are important grade indicators, occurring in 94% 

of malignant cases [5]. Size and shape features capture these differences in nuclear and 

cellular structure and support discrimination between tissue cell subtypes [6]. Topological 

features have been shown to support accurate grade classification [5], [7]. Texture features 

contain information about the spatial distribution of gray tones related to tissue structure and 

markers in cytoplasm and nuclei. The gray-level co-occurrence matrix (GLCM) encodes 

properties of this distribution. The gray level run-length matrix (GLRL) captures texture 

features from contiguous, directional sequences of similar gray level intensities [8]. Local 

binary pattern (LBP) is a rotation-invariant feature useful for texture classification 

characterizing spatial structure and contrast [9].

In this study, we have extracted a combination of color, shape, texture, and topology 

features. Our goal is to identify robust, informative features for Fuhrman grading and link 

them to pathologists’ interpretation. Similar previous work discussed biological 

interpretation of statistically significant feature subsets for one vs. one Fuhrman grading 

models [10]. Compared to previous work, we use a different dataset, a different set of 

imaging features, and different prediction model design. Using one vs. all Fuhrman grade 

models, we are able to isolate not only feature subsets but also individual features useful for 

distinguishing a particular Fuhrman grade from others. Though extracting fewer features 

overall, our approach extracts all combinations of texture, color and shape features with all 

segmented regions, while prior work considers only a targeted subset of feature type and 

region combinations. Consequently, we identify new features semantically linked to 

Fuhrman grading classification.

SECTION III. Methods

A. Data

Our dataset consists of 160 RGB images of H&E stained renal carcinoma tissue samples. 

These images are manually curated 2048×2048, 24-bit RGB sections of whole-slide images. 

Three carcinoma subtypes are represented in the dataset: clear cell (47%), papillary (33%), 

and chromophobe (20%). Expert pathological labeling of the dataset yielded 13% grade 

1,31% grade 2,39% grade 3, and 17% grade 4 using the Fuhrman grading criteria.
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B. Feature Extraction

Images are first segmented via the segmentation classifier described in [11] into nuclear, red 

blood cells, cytoplasm, and background regions. Red blood cell regions are discarded, and 

morphological cleaning is applied to the three remaining regions. To remove small regions 

from cytoplasm and background, which may be spurious or contribute to noise in extracted 

features, regions having a radius smaller than 2 pixels are removed via morphological 

opening with a disk. Connected components comprised of fewer than 20 pixels are then 

removed. This cleaning is not applied to nuclear regions, where small components may be 

individual nuclei. From each image and binary segmentation, we extract 1316 color, texture, 

shape, and topological features for each image.

Color features include 16-bin histograms and intensity distribution properties for the 

grayscale image and each color channel, color channel intensity differences, red ratio [12], 

and each of these features repeated for each region of interest, totaling 704 features. For 

these and all other features, distribution properties are extracted as eight summary statistics: 

mean, median, standard deviation, skewness, kurtosis, minimum, maximum, and inter-

quartile range [10].

We extract 22 Haralick features from the GLCM, 44 GRLR features, and 18 LBP features 

for the entire image and each region of interest [8], [9]. The image is quantized into 8 

discrete levels prior to GLCM and GLRL feature extraction. In total, we extract 339 texture 

features.

To quantify whole image shape features, the total area, number of distinct objects, and total 

perimeter are extracted for each region of interest. Each individual segmented object is also 

analyzed to reveal information typically related to the nuclear and cytoplasmic structures. 

Statistical distribution properties of each region of interest are extracted for the area, convex 

hull area, eccentricity, Euler number, axis lengths, orientation, and solidarity of each 

connected component, yielding 225 shape features.

Topological features are extracted based on the centroids of connected components 

segmented as nuclei. We measure distribution statistics of region area, edge length, and 

region perimeter of the Voronoi diagram and area and edge length of Delaunay triangulation, 

as well as the edge lengths of the minimal spanning tree of the triangulation graph [7]. This 

yields 48 topological features.

C. Model Development

Model selection and evaluation is performed through nested cross-validation consisting of 

10 iterations of 3 folds in both inner and outer cross-validation. Dataset sampling in both the 

outer and inner folds is stratified by grade to preserve proportional representation of each 

grade. Binary one-versus-all classifiers are developed in each inner fold for each grade. 

Within each inner fold features are ranked for each grade, then a grid search is performed 

over all (hyper)parameters jointly. Winning parameters are selected according to the 

maximal mean accuracy of each unique parameter tuple within the inner cross-validation. 

This winning parameter tuple is used for model training in the corresponding outer cross-

validation fold. Multiclass classification is aggregated from the selected binary classifiers by 
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labeling each testing set pattern with the grade whose corresponding binary classifier has the 

maximal positive class probability (with random tie breaking) [13]. This process is repeated 

for each outer cross-validation fold independently.

Features are ranked by minimum redundancy maximum relevancy (mRMR) feature 

selection [14], using mutual information difference as the kernel. mRMR is a supervised, 

sequential feature ranking process whose object is, for each sequential feature, to select the 

remaining feature that maximizes the mutual information (joint probability density) with the 

target labeling while minimizing the mutual information between the new features and all 

features already selected. The number of features selected for model training is a parameter 

of grid search rather than chosen by heuristic during ranking. Prior to ranking, features are z-

scored, then discretized into half-standard score width bins. Features are also z-scored, but 

not discretized, for model development.

Radial-basis kernel support vector machines (RBF SVM) are the classification algorithm for 

all models presented in this work [15]. The misclassification penalty hyperparameter, C, and 

radial basis function width, γ, are optimized jointly with a number of selected model 

features via grid search. Parameter search for γ is conducted in {2–16,2–145…,2–1}, C in 

{20,215,…,212}, and number of selected features in {1, 2,. …,1016,1018,…,103}. In all, we 

consider 4653 parameter combinations and develop 17.2 million models.

SECTION IV. Results and Discussion

A. Grade Classification

Our model selection methodology resulted in an outer cross-validation accuracy of 

90.43±4.43∘ %, as shown in the confusion matrix in Fig. 2. Recall is best for grade 2 and 

worst for grades 1 and 4. For grades 1, 2, and 3, most confusion occurs between neighboring 

grades, which is expected given the progressive, ordinal nature of the Fuhrman schema. 

However, for grade 4, most mislabeling (8%) occurs as grade 1, despite the marked 

dissimilarity of grade 1 and grade 4 tissue. Overall, most mislabeling occurs from a true 

lower grade to a predicted higher grade, which may be desirable from a clinical standpoint 

as the risk of underestimating the severity of illness is typically greater than that of 

overestimating it.

To evaluate the robustness of our model, Fig. 3 gives an analysis of the predictivity of 

selected model parameters, i.e., the correlation of model performance in internal and 

external validation. Although aggregate grade classification variance in outer validation is 

greater than in internal validation, 70% of outer folds have higher accuracy than the mean 

inner accuracy and 43% exceed the maximum inner accuracy. In a multiclass setting with 

high dimensional patterns, the 50% increase in training images in outer folds may increase 

model accuracy more than bias towards the selected inner CV parameters decreases it. This 

low bias and the low predictivity dispersion jointly indicate model parameters do not overfit 

inner cross-validation data.

The distribution of predictivity of all model parameters in Fig. 3 reflects the accuracy and 

relative difficulty of each grade classification task in Fig. 2. Selected binary models for all 
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four grades have greater predictivity than nearly all other model parameters (grayscale 

density). For grade 2 many model parameterizations yield classifiers accurate in both 

internal and external validation, resulting from a large region of high accuracy in parameter 

space. In contrast, grade 4 has few parameterizations yielding accurate classifiers in either 

internal or external validation, with dense regions in Fig. 3 oriented perpendicular to the line 

perfect predictive correlation indicating high bias-variance tradeoff. Therefore, selecting 

models with both high internal accuracy and high predictivity is more difficulty for grade 4.

B. Informative Features and Semantic Interpretation

The ranking frequency of the four feature categories aggregated across all inner cross-

validation iterations is shown in Fig. 4, which summarizes the relative contribution of 

different feature types to each grading task. Frequency is normalized by the prevalence of 

each feature type so that relative performance can be assessed. First color features, then 

shape features are prevalent at the best ranks for all grades. Since the Fuhrman schema 

defines grade by nuclear morphology and density, the high ranking of shape and color 

features suggests that these features can capture cytoplasmic prevalence and nuclear density. 

Texture, which has previously been suggested to be more pertinent to tissue classification 

where cytoplasm properties are important indicators, is ranked lower on average than the 

other three categories. Following the first few ranks dominated by color and shape features, 

topology is highly ranked in grades 1 and 4. This suggests that topology features can capture 

sparse cell density in grade 1 and dense nucleation in grade 4.

The 5 most frequently selected and best ranked features for each grade in outer cross-

validation, in Table 1, suggest features that are most consistent with the Fuhrman schema. In 

the Fuhrman schema, increasing nuclear size is the primary grade indicator. Table 1 suggests 

that minimum nuclear major axis length and median nuclear area, which contribute to 

accurate classification at both extremes of disease progression in grade 1 and grade 4, can 

capture nuclear size and elongation. The top ranked feature in grade 4, the lowest bin of the 

red channel histogram, may increase when nuclei are numerous and dense and little 

cytoplasm is present.

Likewise, red-blue channel difference skewness is likely to associate with nuclear/

cytoplasmic ratios, relating to increasing cell density in grade 2. Selected features also agree 

well with existing literature. For example, markedly increased nuclear/cytoplasmic ratios 

and nuclear eccentricity are useful in the separation of low-grade transitional cell carcinoma 

from benign urothelium [16]. Eccentric nuclei also indicate malignant rhabdoid tumors [17]. 

Feature type and region combinations not considered in previous work are also highly 

selected. Notably, regional color features appear for three grades in Table 1. Color properties 

of nuclear regions may indicate the presence nucleoli, which appear in higher Fuhrman 

grade samples. The red channel in cytoplasm regions can relate to cell density. In summary, 

Table 1 lists key image features affected by increasing nuclear size, irregularity, and 

prominence. Frequent selection of these feature subsets makes them an efficient choice for 

semantic interpretation of features that most impact the models. Categorical analyses like 

Fig. 4 can provide broad insight for the remaining features where specific interpretation is 

impractical.
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SECTION V. Conclusion

The models developed by our methodology can classify renal carcinoma images into one of 

four Fuhrman grades with 90.4% accuracy. Predictivity analysis shows this methodology to 

be robust to sampling effects and selection set bias, indicating likely generalizability to other 

datasets in future work. Fuhrman grading criteria mainly depend on progressive growth and 

deformation of nuclei in carcinoma. Leveraging this fact, we summarize which parsimonious 

set of image features can best capture these nuclear characteristics. Some of the emerging 

features explicitly capture shape properties, while others only implicitly relate to 

pathologists’ judgments, e.g., LPB features and color properties. We report only top 5 

features but in fact many more may be used in some complex decision models. In future we 

will further analyze the model performance with small interpretable feature sets and suggest 

more granular image feature types that best capture pathologists’ judgments. Using such 

imaging features will result not only in robust but interpretable decision support systems.
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Figure 1. 
Representative histology images for each fuhrman grade
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Figure 2. 
Confusion matrix of grade labeling on outer cross-validation
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Figure 3. 
Predictivity analysis of selected models (red points) and all models in the parameter grid 

search (grayscale density)
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Figure 4. 
Ranking frequency of color, shape, texture, and topology features
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