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Abstract— Prediction of survival for cancer patients is an 
open area of research. However, many of these studies focus on 
datasets with a large number of patients. We present a novel 
method that is specifically designed to address the challenge of 
data scarcity, which is often the case for cancer datasets. Our 
method is able to use unlabeled data to improve classification by 
adopting a semi-supervised training approach to learn an 
ensemble classifier. The results of applying our method to three 
cancer datasets show the promise of semi-supervised learning 
for prediction of cancer survival. 

I. INTRODUCTION 

Prediction of survival for cancer patients is a challenging 
task; however, it is important for determining treatment 
course. Physicians typically make subjective decisions based 
on past experience. These decisions can also prevent 
unnecessary therapy and improve patient quality of life [1]. 
Moreover, the prediction of survival can enhance the ability to 
determine correct prognosis which, in itself, is valuable for 
research and timely referral of patients to hospice care [2]. 

Omics data (i.e., genomics and proteomics) have been a 
promising source of information for identifying molecular 
signatures of cancer. Thus, different strategies have been 
developed [3-6] to exploit high-throughput data for the 
prediction of cancer survival. However, these approaches pose 
several challenges that should be addressed before a 
comprehensive and accurate prediction can be achieved. Some 
of these challenges include: lack of a biological understanding 
of the related pathways and genes, data scarcity, and existence 
of a plethora of irrelevant features which altogether, result in 
difficulty in training accurate omics-based classifiers. 

Yet a successful surrogate strategy for predicting survival is 
based on using clinical factors that are recorded through the 
course of a patient’s treatment. The issue with such data is that 
it often contains missing values. 

To date, there have been several approaches suggested in 
the literature which differ mostly in the adopted data mining 
technique and how to deal with the missing attribute values 
and labels. An important shortcoming that a majority of these 
methods share is that they are either designed for big datasets 
or have not been tested on such datasets. Snow et al. [7] used 
an artificial neural network (ANN) to predict 5-year survival 
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after colon carcinoma treatment. They selected a training set 
of patients that either survived for more than 5 years after 
treatment or died within 5 years. In a similar study, Ng et al. 
[8] developed an ANN to predict the survival time of 
terminally ill cancer patients using clinical data from National 
Cancer Center Singapore (NCCS). To deal with the missing 
data, they either removed the attributes with missing values 
or excluded patients with missing values. In [9], authors 
maintained that classifying the samples in a crisp way may 
not always be the best choice and suggested a fuzzy-based 
decision tree approach. They applied their method to a breast 
cancer dataset and removed the cases with missing attribute 
values. Thongkam et al. [10] proposed another approach to 
predict breast cancer survivability using AdaBoost. They only 
kept patients who either survived for more than five years or 
died within that period. Finally, Abreu et al. [11] used three 
different ensemble methods to predict survival of breast 
cancer patients and used k-nearest neighbors to impute 
missing values. Moreover, they also filtered out patients who 
were still alive at the time of the study but who had not lived 
more than the threshold of the study. 

A prediction approach suitable for small datasets should 
address several key challenges, as follows: 
 It should be able to deal with incomplete data since 

filtering out the incomplete samples would prohibitively 
reduce the size of the dataset. 

 It must generalize well to avoid over-fitting. 
 It should account for the heterogeneity in the data. For 

instance, it should remain robust when predicting 
survival in patients with different histologic grades. 

 It should be able to use all available data. A large number 
of patients in the datasets are those who dropped out of 
the study before the survival threshold. These patients are 
typically unlabeled samples that are not included for 
classification. While we do not know the label for these 
samples, there may be useful information in these patient 
samples that may improve the accuracy of the prediction 
model. 

We present a method for predicting survival of cancer 
patients using incomplete clinical data. The novelty of this 
method is two-fold. First, this method is able to deal with noisy 
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input data and is robust to over-fitting caused by data scarcity. 
Second, this method uses a semi-supervised learning paradigm 
that leverages available unlabeled data to improve prediction 
accuracy.  

The remainder of this paper is organized as follows. In 
section II, we present our method and describe three TCGA 
datasets used to evaluate our method. In section III, we present 
our results which show that the semi-supervised approach can 
exploit the unlabeled samples to improve the accuracy of the 
prediction. Finally, we conclude in section IV. 

II. MATERIAL AND METHODS 

A. Clinical Cancer Datasets 

We use the clinical data associated with cancer patients 
from the Cancer Genome Atlas (TCGA). Specifically, we are 
interested in three important sub-types of cancers, namely, the 
kidney or renal cell carcinoma (KIRC), ovarian serous 
cystadenocarcinoma (OV) and, the pancreatic ductal 
adenocarcinoma (PAAD). Table I lists the statistics of these 
datasets. 

B. Data Pre-Processing 

We use the following protocol to pre-process the data to 
make them suitable for prediction modeling.  
 Any attribute that has more than four possible 

assignments is stratified into at most four categories.  
 Attributes that have the same value for more than 99% 

of the patients are removed. 
 For each dataset and a given survival threshold, we 

divide the samples into two groups, namely, the labeled 
and the unlabeled groups. The labeled category 
includes those patients who did not survive for the 
threshold amount of years (negative class) or who are 
known to have lived for at least that amount of time 
(positive class). The unlabeled data includes patients 
still alive at the time of last follow-up, but not known 
to have lived more than the specified threshold. 

 Survival thresholds are selected such that almost half 
of the labeled samples fall within the positive class and 
the rest in the negative class. 

Table I lists the size of each category for each cancer 
dataset and the relative size of unlabeled samples. Table II lists 
attribute statistics of the datasets before and after pre-
processing. According to the table, kidney and ovarian cancers 
show relatively similar statistics except that, compared to the 

kidney cancer dataset, a smaller number of informative 
features are retained for ovarian cancer. In contrast, the 
pancreatic cancer dataset exhibits a significant difference in 
terms of the percentage of missing entries and the size of the 
available dataset. Table III lists the set of attributes and their 
corresponding possible value assignments for the kidney, 
ovarian, and pancreatic cancer datasets, respectively. 

C. Ensemble Classification 

We use ensemble learning because it is robust to over-
fitting and combines multiple classifiers, each of which 
performs well for a specific part of the input space. The net 
outcome of ensemble learning results from assigning higher 
weights to weak learners that perform better for the given 
input samples. Specifically, we use Robust Boost [12], which 
has been shown to be robust to noisy labels. This robustness 
is desirable when adding samples to the training set as a result 
of semi-supervised training. Moreover, we use decision trees 
from the classification and regression tree (CART) toolbox 
that is able to deal with missing attribute values by using a 
technique called surrogate splitting [13]. 

D. Semi-Supervised Prediction Modeling 

We propose a semi-supervised approach that leverages 
unlabeled training data to increase sample size (Figure 1). 
After pre-processing, we use the initial labeled data to train a 
classifier and predict the labels of the unlabeled data. Next, we 

TABLE I. NUMBER OF LABELED VS. UNLABELED SAMPLES 
 

Cancer Sub-Type # of Labeled Samples # Un-
Labeled 
Samples 

% Un-
Labeled #Positive #Negative  

KIRC (5-y survival) 111 142 279 52% 
OV (3.5-y survival) 180 197 210 36% 

PAAD (1.4-y survival) 38 36 100 57% 

 
TABLE II. STATISTICS OF MISSING ATTRIBUTES FOR ORIGINAL AND 

PROCESSED CLINICAL DATASETS 
Cancer Sub-

Type 
Unprocessed Clinical Data Processed clinical data 
# Factors % Missing 

Values  
# Retained 

Factors 
% Missing 

Values  
KIRC 55 31.38% 16 2.5% 
OV 50 33.8% 10 3.3% 

PAAD 70 38.58% 26 23.49% 

TABLE III. LIST OF PROCESSED CLINICAL FEATURES 
 

Renal Cancer  Ovarian cancer  Pancreatic cancer 

1. Race 
2. Gender 
3. Neoplasm Histologic   
Grade 
4. Laterality 
5. Tissue Prospective 
Collection Indicator 
6. Tissue Retrospective 
Collection Indicator 
7. Pathologic T 
8. Pathologic N 
9. Pathologic M 
10. Primary Lymphnode 
Presentation Assessment 
11. Person Neoplasm 
Cancer Status 
12. Prior Dx 
13. Pathologic Stage 
14. History of 
Neoadjuvant Treatment 
15. Age 
16. Hemoglobin Result 

1. Race 
2. Ethnicity 
3. Initial 
Pathologic 
Diagnosis Method 
4. Person 
Neoplasm Cancer 
Status 
5. Neoplasm 
Histologic Grade 
6. Venous 
Invasion 
7. Lymphatic 
Invasion 
8. Age 
9. Anatomic 
Neoplasm 
Subdivision 
10. Pathologic 
Stage 

1. Race 
2. Gender 
3. Prior Dx 
4. Initial Pathologic 
Diagnosis Method 
5. Surgery Performed Type 
6. Neoplasm Histologic 
Grade 
7. Histologic Grading Tier 
Category 
8. Maximum Tumor 
Dimension 
9. Age 
10. Residual Tumor 
11. Pathologic T 
12. Pathologic N 
13. Pathologic M 
14. Pathologic Stage 
15. Person Neoplasm 
Cancer Status 
16. Tobacco Smoking 
History 
17. History of Diabetes 
18. History of Chronic 
Pancreatitis 
19. Family History of 
Cancer 
20. Radiation Therapy 
21. New Tumor Event after 
Initial Treatment 
22. Anatomic Neoplasm 
Subdivision 
23. Targeted Molecular 
Therapy 
24. Alcohol Consumption 
Frequency 
25. Tissue Prospective 
Collection Indicator 
26. Tissue Retrospective 
Collection Indicator 



  

choose a confidence threshold according to which we can 
select part of the unlabeled set that can potentially improve the 
labeled sample size. We only use unlabeled samples that the 
model classifies with a high confidence level. In other words, 
the prediction score of these unlabeled samples exceed some 
threshold. We find this threshold by means of a 10-fold cross-
validation on the training set. More specifically, for each fold 
we record the threshold that results in the highest prediction 
accuracy after running the whole pipeline. To choose the final 
threshold, we use a majority voting among these recorded 
thresholds that were found for each fold. Once we find the 
threshold, we apply the learned model iteratively to the 
remainder of the samples in the unlabeled set. During each 
round of prediction we choose the samples whose prediction 
score is beyond the confidence threshold and move them to the 
training set for the next round. We label these samples 
according to the classifier’s prediction. This iterative 
procedure continues until no prediction passes the confidence 
test in which case we train our model on the compiled training 
set to generate the final model. 

III. RESULTS AND DISCUSSION 

We evaluate the performance of the prediction model when 
trained using supervised learning and semi-supervised 
learning paradigms. We use accuracy (Acc), mean of 
sensitivity and specificity (SnSp/2), and the Matthews 
correlation coefficient (MCC) [14] as our performance 
measures. All evaluation metrics are computed using 5-fold 
cross validation. 

Figure 2 shows the prediction accuracy of the trained model 
for both supervised and semi-supervised learning paradigms.  
As clearly seen from the figure, the semi-supervised approach 
is superior to the supervised approach for the kidney and 
pancreatic cancer datasets. This performance is more 
pronounced in the latter case due to the smaller size of the 
dataset as evidenced by Table I. This corroborates our 
previous assertion that semi-supervised training can offer 
considerable benefits when data are scarce. For the ovarian 
dataset, supervised learning performs slightly better for some 
survival thresholds. This is expected due to the smaller 
number of available informative predictors (Table II and 
Table IV). Furthermore, Figure 3 compares the 5, 3.5 and, 1.4-
year survival prediction performance measures for the kidney, 
ovarian, and pancreatic cancers, respectively. According to 
this figure, even though the accuracy of the supervised 
approach applied to the ovarian cancer is slightly higher than 
the semi-supervised counterpart, the corresponding MCC is 
still smaller, which suggests that higher accuracy of the 
supervised approach may be related to the distribution of the 
positive and negative classes rather than to the learning 
method itself. 

Figure 1. Optimization of the optimal semi-supervised threshold using 
cross validation.  

Figure 2. Comparison of prediction performance for supervised (sup) 
and semi-supervised (semi sup) training for kidney, ovarian, and 
pancreatic cancers. Models were compared for different survival 
thresholds. 

Figure 3. Performance comparison between supervised and semi-
supervised methods at fixed survival thresholds of 5, 3.5, and 1.4 years 
for kidney, ovarian, and pancreatic cancer, respectively.   



  

 
Finally, Table IV lists the most important features and their 

corresponding weights found by our trained model. 
Specifically, these are the importance degrees of the decision 
trees averaged over all weak learners. There are a few 
interesting facts implied by this table. First, tumor-related 
attributes, if included in the feature set, account for most of the 
predictive power of the model. Furthermore, age of the patient 
is another important factor that contributes to the prediction of 
patient survival. Last, race is a factor in kidney cancer survival. 
This is likely related to genetic factors that are different among 
different populations. 

IV. CONCLUSION AND FUTURE WORK 

We designed a classifier that was able to predict labels for 
unlabeled data with missing attribute values. We then used a 
semi-supervised learning approach to train a prediction model 
and showed that, for the task of survival prediction in the 
presence of a significant amount of unlabeled data, semi-
supervised learning can improve performance. We applied the 
semi-supervised learning approach to kidney, ovarian, and 
pancreatic cancer data. Moreover, the weights of the features 
in the trained model can be interpreted by human experts.  
 We simplified the survival prediction problem by 
converting the original regression problem into a binary 
classification problem using a survival threshold. However, 
this removes information that may be used to further improve 
accuracy. Future approaches may consider using semi-
supervised learning in the context of regression to predict 
cancer survival.  
 
 
 
 
 
 
 
 

V. ACKNOWLEDGEMENT 

The authors thank Janani Venugopalan and Dr. James 
Cheng for assisting in manuscript preparation. 

REFERENCES 
[1] P. Glare, K. Virik, M. Jones, M. Hudson, S. Eychmuller, J. Simes, et 

al., "A systematic review of physicians' survival predictions in 
terminally ill cancer patients," British Medical Journal, vol. 327, pp. 
195-198, Jul 26 2003. 

[2] S. Gripp, S. Moeller, E. Bolke, G. Schmitt, C. Matuschek, S. Asgari, et 
al., "Survival prediction in terminally ill cancer patients by clinical 
estimates, laboratory tests, and self-rated anxiety and depression," 
Journal of Clinical Oncology, vol. 25, pp. 3313-3320, Aug 1 2007. 

[3] S. Michiels, S. Koscielny, and C. Hill, "Prediction of cancer outcome 
with microarrays: a multiple random validation strategy," Lancet, vol. 
365, pp. 488-92, Feb 5-11 2005. 

[4] A. Prat, A. Lluch, J. Albanell, W. T. Barry, C. Fan, J. I. Chacon, et al., 
"Predicting response and survival in chemotherapy-treated triple-
negative breast cancer," British Journal of Cancer, vol. 111, pp. 1532-
1541, Oct 14 2014. 

[5] X. Chen and L. Wang, "Integrating biological knowledge with gene 
expression profiles for survival prediction of cancer," J Comput Biol, 
vol. 16, pp. 265-78, Feb 2009. 

[6] D. Kim, J. G. Joung, K. A. Sohn, H. Shin, Y. R. Park, M. D. Ritchie, et 
al., "Knowledge boosting: a graph-based integration approach with 
multi-omics data and genomic knowledge for cancer clinical outcome 
prediction," J Am Med Inform Assoc, vol. 22, pp. 109-20, Jan 2015. 

[7] P. B. Snow, D. J. Kerr, J. M. Brandt, and D. M. Rodvold, "Neural 
network and regression predictions of 5-year survival after colon 
carcinoma treatment," Cancer, vol. 91, pp. 1673-8, Apr 15 2001. 

[8] T. Ng, L. Chew, and C. W. Yap, "A Clinical Decision Support Tool To 
Predict Survival in Cancer Patients beyond 120 Days after Palliative 
Chemotherapy," Journal of Palliative Medicine, vol. 15, pp. 863-869, 
Aug 2012. 

[9] M. U. Khan, J. P. Choi, H. Shin, and M. Kim, "Predicting breast cancer 
survivability using fuzzy decision trees for personalized healthcare," in 
Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th 
Annual International Conference of the IEEE, 2008, pp. 5148-5151. 

[10] J. Thongkam, G. D. Xu, and Y. C. Zhang, "AdaBoost Algorithm with 
Random Forests for Predicting Breast Cancer Survivability," 2008 Ieee 
International Joint Conference on Neural Networks, Vols 1-8, pp. 3062-
3069, 2008. 

[11] P. Abreu, H. Amaro, D. Silva, P. Machado, M. Abreu, N. Afonso, et 
al., "Overall Survival Prediction for Women Breast Cancer Using 
Ensemble Methods and Incomplete Clinical Data," in XIII 
Mediterranean Conference on Medical and Biological Engineering and 
Computing 2013. vol. 41, L. M. Roa Romero, Ed., ed: Springer 
International Publishing, 2014, pp. 1366-1369. 

[12] Y. Freund, "A more robust boosting algorithm," arXiv preprint 
arXiv:0905.2138, 2009. 

[13] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification 
and regression trees: CRC press, 1984. 

[14] B. W. Matthews, "Comparison of the predicted and observed secondary 
structure of T4 phage lysozyme," Biochimica et Biophysica Acta 
(BBA)-Protein Structure, vol. 405, pp. 442-451, 1975. 

 

TABLE IV. IMPORTANT FEATURES OF FINAL CLINICAL PREDICTORS 

 
Kidney cancer  Ovarian cancer  Pancreatic cancer

Factor  Importance  Factor  Importance  Factor  Importance 

neoplasm 
cancer 
status 

0.77 
 

neoplasm 
cancer 
status 

 
0.805 

 

molecular 
therapy 

 
0.2419 

lymphatic 
invasion 0.0904 

age 0.1634 age  0.1418 

age 0.0575 
clinical 
stage 

0.018 pathologic T  0.1222 

clinical 
stage 0.0411 

lymphatic 
invasion 

0.0137 pathologic 
stage 

0.1088 

histologic 
grade 0.0281 

    radiation 
therapy 

0.0858 

race 0.013 
    residual 

tumor 
0.083 

       histologic 
grade 

0.076 

        tumor 
dimension 

0.0583 

        anatomic 
neoplasm 
subdivision 

0.0416 

        surgery  type  0.0407 


