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Abstract— This paper presents a technique to improve the 

performance of an LDA classifier by determining if the 

predicted classification output is a misclassification and thereby 

rejecting it. This is achieved by automatically computing a class 

specific threshold with the help of ROC curves. If the posterior 

probability of a prediction is below the threshold, the 

classification result is discarded. This method of minimizing 

false positives is beneficial in the control of electromyography 

(EMG) based upper-limb prosthetic devices. It is hypothesized 

that a unique EMG pattern is associated with a specific hand 

gesture. In reality, however, EMG signals are difficult to 

distinguish, particularly in the case of multiple finger motions, 

and hence classifiers are trained to recognize a set of individual 

gestures. However, it is imperative that misclassifications be 

avoided because they result in unwanted prosthetic arm 

motions which are detrimental to device controllability. This 

warrants the need for the proposed technique wherein a 

misclassified gesture prediction is rejected resulting in no 

motion of the prosthetic arm. The technique was tested using 

surface EMG data recorded from thirteen amputees 

performing seven hand gestures. Results show the number of 

misclassifications was effectively reduced, particularly in cases 

with low original classification accuracy. 

I. INTRODUCTION 

Myoelectric control of upper limb prosthetic devices has 
evolved over the last few decades and continues to be 
researched [1]. The use of surface electromyography (sEMG) 
signals provides a non-invasive means to identify the user's 
motion intention, whereby restoring lost arm function to 
amputees. Although several prosthetic devices are 
commercially available, there is yet much to be done to 
develop a multi-articulating, intuitive, comfortable, light 
weight, cost effective and aesthetically designed prosthetic 
device, which would truly replicate the human arm. This 
study aims to enhance the functionality of a myoelectric 
prosthetic device, which is an important factor affecting user 
rejection rate [2], by minimising the formation of unwanted 
gestures. 

Pattern recognition based myoelectric control of 
prostheses has the potential for superior functionality by 
providing an intuitive and dexterous control [1]. It is based on 
the hypothesis that a distinct EMG signal results in the 
formation of a specific forearm gesture. But physiologically, 
this is not the case because EMG signals are complex and 
time-varying. Hence classifiers have been trained to 
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recognise specific features in EMG signals and predict the 
associated gesture. A multitude of classifiers have been 
employed for interpreting hand, wrist and forearm gestures, 
such as Linear Discriminant Analysis (LDA), Support Vector 
Machines, Artificial Neural Networks, Gaussian Mixture 
Model, Hidden Markov model, k-nearest neighbour etc. The 
LDA classifier has been widely used in this field because it 
provides good classification accuracy despite its simplicity of 
implementation and low training time [3].  Several 
researchers have extended the LDA in order to overcome the 
complex nature of EMG signals, which poses significant 
challenges to classification. Chen et al. [4] developed a 'self-
enhancing LDA' classifier to account for the non-stationary 
property of EMG that can be attributed to muscle fatigue, 
electrode shift, sweating etc. They used a continuous 
classification model and retrained the classifier by updating 
the mean vector and covariance matrix of the class into which 
the latest EMG pattern was classified. This method served the 
purpose of enlarging the training data set to improve 
classification. In [5] a similar strategy was used and feature 
vectors were replaced in a part of the training data set with 
new ones, leaving the other part untouched to preserve 
classifier stability.   

Another challenge in pattern recognition of human arm 
motion is the manifold gestures possible in a real world 
scenario, while in a research environment only a limited 
number of gestures can be used to train the classifier. A 
robust classifier must be capable of identifying and 
discarding an unknown pattern, instead of misclassifying it as 
a trained class. False motions of the prosthetic arm are 
frustrating for the user as corrections must be enforced, 
whereas, absence of motion would go unnoticed [6]. Post 
classification strategies using ensemble or majority voting to 
reject motion decisions generated by an LDA classifier are 
reported in [6, 7, 8]. An alternative technique has been put 
forth by Scheme et al. [9], where a confidence score, 
computed from the posterior probability of LDA 
classification, is compared to a fixed threshold. The threshold 
is determined empirically to provide a reasonable trade-off 
between classification accuracy and the frequency of motion 
rejections. Amsuss et al. [10] has trained an artificial neural 
network to detect misclassifications of LDA, the base 
classifier. 

The technique presented in this paper aims to reject 

misclassifications generated by an LDA classifier using an 

approach similar to that proposed in [9]. However, in this 

paper a confidence threshold is calculated automatically for 

each individual gesture class, with the help of receiver 

operating characteristic (ROC) based curves. An output from 

the classifier is rejected if its confidence level is below the 

threshold associated with the given class, thus preventing the 
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Fig. 1. Positioning of the two 64-channel electrodes on (a) flexor muscles 
and (b) extensor muscles. 
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Fig. 2. Hand gesture recorded: (a) open, (b) close, (c) pinch, (d) point, (e) 
thumb-pinky, (f) lateral grip, (g) tripod 

 

prosthesis from performing a possibly unwanted gesture. 

The proposed technique has been tested using surface EMG 

data recorded from thirteen amputees performing seven hand 

gestures. Experimental results demonstrate that such a 

technique can effectively reduce the number of 

misclassifications, particularly in cases with low original 

classification accuracy. 
The reminder of the paper is organized as follows. 

Section II describes recording protocol, data processing and 
threshold computation. Section III reports experimental 
results and discussions, while Section IV concludes the 
paper. 

II. METHODS 

A. Data Acquisition 

Eight trans-radial amputees (including three congenital) 
and five partial hand amputees participated in an 
experimental study, which was approved by the University of 
Strathclyde Ethics Committee. Surface electromyography 
(sEMG) signals were acquired from the forearms of the 
volunteers with their informed consent. Two high density 
electrodes of 64 channels each were used, one being placed 
on the flexor muscles and the other on the extensor muscles, 
as illustrated in Fig. 1. The electrodes were connected to an 
EMG-USB2 bioelectrical signal amplifier from OT 
Bioelectronica, and the EMG signals were recorded using a 
floating monopolar configuration. A sampling frequency of 
2048 Hz was used, and built-in hardware filters of 3 Hz, for 
Low-Pass, and 900 Hz for High-Pass, were adopted. The gain 
used was either 500, 1000 or 2000, depending on the 
individual participant’s EMG signal strength. 

The experimental protocol during recording was as 
follows. Participants were seated comfortably with their 
elbows flexed and forearms placed on a desk in front of them. 
They were prompted by written messages displayed on a 
monitor in front of them to perform hand gestures (open, 
close, pinch, point, thumb-pinky, lateral grip, tripod) as in 
Fig. 2, in random order with five repeats per gesture. A 
mirror box was positioned between their arms (in the case of 
unilateral amputees), which enabled them to visualise the 
intended formation of gestures using their amputated arms, 
by viewing the reflection of the gesture performed by the 
contra-lateral arm. All gestures were formed from a relaxed 
position in a three second time interval, followed by the 
gesture being held from four to five seconds randomly, and 
finally returning to rest, which was held from three to four 
seconds randomly. Hence the length of one gesture repeat 
was between ten and twelve seconds.  

B. Data Processing 

The EMG data from each participant is processed offline 
in Matlab, by first segmenting the signal, followed by feature 
extraction from individual blocks of the segmented data, and 
finally training an LDA classifier to recognise EMG patterns 
associated with seven forearm gestures, and testing it.  

The myoelectric signal from each of the 128 channels 
pertaining to one gesture repeat is segmented discarding the 
first 1.5s of gesture formation time and the relaxed time. The 
EMG signals are filtered in software, with three 3

rd
 order 

Butterworth filters, with the following characteristics: 1) a 
48-52 Hz stop-band to remove the 50 Hz main; 2) a 20 Hz 
high-pass to remove motion artifacts; 3) a 400 Hz low-pass to 
discard unwanted frequency content and further prevent 
aliasing. Then time domain features are extracted from the 
resultant EMG signal of length 5.5s-6.5s using the 
overlapped windowing technique (Englehart and Hudgins, 
2003) with an analysis window of length 200ms and 50% 
overlap. The window length lies within the optimal range for 
good controllability of the prosthetic arm (Smith et al, 2011). 
For each analysis window the mean absolute value (MAV), 
slope sign change (SSC), waveform length (WFL) and zero 
crossings (ZC) are computed (Hudgins et al., 1993). Features 
from the same analysis window and pertaining to different 
channels were concatenated to form a single feature vector. 
Given 4 features and N channels, the length of a feature 
vector is therefore L=4N. 

Four of the 5 repeats of each gesture (~80% of the data) 
are selected randomly to train the classifier. The rest of the 
data is used for testing. This process is repeated a thousand 
times and, at each iteration, the classification accuracy is 
calculated as well as the average classification accuracy for 
all completed iterations. The process converges when the 
difference between the average classification accuracies for 
two consecutive iterations is less than 0.0005. This usually 
occurs around the 500th iteration. 

C. Threshold Computation 

Along with the classification result, the LDA classifier 

provides in output the posterior probability of the 

classification [9]. This value is compared with a threshold to 

determine if the classified result is usable or should be 

discarded. Hence the posterior probability acts a level of 

confidence.  For each gesture class, one can plot a histogram 
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Fig. 3. Histogram of correct (left hand-side) and incorrect (right hand-side) 
classifications for the ‘lateral’ gesture. The red dashed line is the best 

threshold in this case. 

 
Fig. 4. Threshold computation using ROC curves: in blue is the correct rate 
plotted against the sorted error rate; the red dashed line is the ROC space 

diagonal; in green is the difference between blue line and diagonal. The 

selected point is in correspondence of the black star on the blue line. 

of the number of times in which that class has been selected 

by the classifier, against different levels of the posterior 

probability. Therefore, two histograms can be computed, i.e. 

one for correct classifications and the other for incorrect 

decisions by the classifier. Fig. 3 illustrates such two 

histograms for a sample gesture, ‘lateral’ in this case. 

The threshold to be computed can be imagined as a 

vertical line at the same location, in both histograms: all the 

classifications to the left of such a line are discarded as 

erroneous; while all classifications to its right are deemed as 

correct. In the ‘incorrect’ histogram, one would want to set 

the threshold high, in order to discard a high number of 

misclassifications. On the contrary, in the ‘correct’ 

histogram, the threshold should be low, to retain as many 

correct classifications as possible. The wanted value of 

threshold must be such that the loss in correct classifications 

is at its lowest compared to the rejections of 

misclassifications. The computation of the threshold is done 

automatically per gesture using the following technique. 

For possible values of threshold ranging from 0 to 0.95 

in 0.05 increments, correct classification rate and error rate 

are computed, therefore obtaining two vectors. The error rate 

vector is then sorted in ascending order, while the correct 

rate vector is rearranged in the same order as the error rate 

vector. Then the correct rate is plotted against the sorted 

error rate, to obtain an ROC curve (blue line in Fig. 4), and 

the diagonal of the ROC space (red dashed line) is subtracted 

from the plotted curve. The wanted value for the threshold is 

selected as the one corresponding to the highest correct 

classification rate on the difference curve (green line). In 

case of multiple points on the difference curve having the 

same  highest  correct  rate,  the right-most one is chosen,  as 

TABLE 1. COMPARISON OF OVERALL CLASSIFICATION ACCURACY AND 

ERROR BEFORE AND AFTER APPLYING ROC ANALYSIS FOR PARTICIPANT 

TT1. 

 
Before ROC 

analysis 

After ROC 

analysis 

Accuracy(%) 41.68 29.82% (-11.86) 

Error(%) 58.32 34.71% (-23.61) 

 

TABLE 2. CLASSIFICATION ACCURACIES ACQUIRED FROM CONFUSION 

MATRICES FROM PARTICIPANT TT1. 

Gestures 

Classification accuracies (%) 

Before ROC 

analysis 

After ROC 

analysis and 

introducing 

'empty' class 

After ROC 

analysis and 

'empty' class 

removed 

Close 65.5 54.6 86.1 

Lateral 20.8 15.7 21.5 

Open 54.5 24.5 61.9 

Pinch 16.2 16.2 16.2 

Pinky 64 45.9 94.6 

Point 54.6 39.1 63 

Tripod 14.6 11.9 18.2 

Overall 41.7 29.8 46.2 

 

this point corresponds to a higher correct rate on the original 

ROC curve. For the example illustrated in Fig. 3 and Fig. 4, 

the best threshold value is 0.7, corresponding to the red 

dashed line in Fig. 3. 
In order to handle the case where the prediction of the 

LDA classifier is rejected as a misclassification, an additional 
gesture class is introduced and labelled as 'empty' gesture. 
Hence, if the confidence level fails the threshold check, the 
EMG pattern would be assigned to the 'empty' class and the 
prosthetic device would not form a new gesture. 

III. RESULTS AND DISCUSSION 

The confidence scores of predicted gestures and the 
classification accuracy and error of the LDA classifier with 
and without the use of the ROC based technique are analysed 
offline using sEMG data from all thirteen participants. Data 
analysis is explained with the help of results from one 
participant who is a traumatic trans-radial amputee (herein 
referred to as participant TT1). This dataset is an example of 
an originally poor classification with classification accuracy 
41.68% and error 58.32% as reported in Table 1. 

First, the confusion matrix for the LDA classification of 
the seven gesture classes is generated. The overall and per-
gesture classification accuracies are provided in Table 2 
respectively. Then histograms of the posterior probabilities of 
correct and incorrect predictions are plotted to visualise the 
confidence levels. Subsequently, ROC analysis is applied for 
each gesture, generating the ROC curves. The confusion 
matrix is computed again using an additional 'empty' class 
into which ROC patterns not passing the threshold check are 
classified. The inclusion of the empty class causes a decrease 
in the overall classification accuracy and error as seen in 
Table 1. However, in a successful classification with ROC 
based post-processing, the decrease in correct classifications 
must be less than the decrease in errors as shown in Table 2. 
Finally, the empty class is removed and a new confusion 
matrix  is  generated.  The  improvement  in  overall  and per- 
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Fig. 5. Classification accuracies before and after applying the ROC analysis 
(after excluding the empty class) for participant TT1. This example is a case 

where classification accuracies are not initially very high and the ROC 

analysis is most beneficial. 

TABLE 3. COMPARISON OF OVERALL CLASSIFICATION ACCURACY AND 

ERROR BEFORE AND AFTER APPLYING ROC ANALYSIS FOR PARTICIPANT 

TP1. 

 
Without ROC 

analysis 

With ROC 

analysis 

Accuracy(%) 90.18 84.29% (-5.88) 

Error(%) 9.82 4.93% (-4.89) 

 

gesture classification accuracies reported in Table 2 can be 
visualized as in Fig. 5. 

An observation made from the data analysis is that the 

proposed post-processing technique is more beneficial for 

improving classification scores when the original score is not 

high. When initial classification score is high (generally 

>90%), the decrease in correct classification may 

occasionally be slightly higher than the decrease in error as 

reported in Table 3, for a traumatic partial hand participant 

(TP1). Such a decrease consists of classifications with low 

confidence, which are therefore discarded and assigned to 

the ‘empty’ class. However, in this case the ROC analysis 

does not negatively affect the final per-gesture and overall 

accuracy, once the ‘empty’ class is removed from the gesture 

set, as it can be appreciated from the graph in Fig. 6. 

IV. CONCLUSION 

A post-classification technique to reduce LDA 

misclassifications has been provided in this paper. The 

results demonstrate the improvement in classification scores 

of gesture recognition for thirteen amputees. This 

improvement is more prominent in the case of classifications 

which initially have low scores and, usually, there is little 

improvement in classifications where the score is already 

high. In the latter case, however, classification scores are not 

negatively affected by the ROC analysis. Hence it is 

recommended that the ROC based technique be incorporated 

to enhance the performance of an LDA classifier, as it can 

only improve classification results, by discarding 

classification output with poor confidence. In future work, 

the computation of the threshold in the case of multiple 

recordings will be investigated. 

 

Fig. 6. Classification accuracies before and after applying the ROC analysis 
(after excluding the empty class) for participant TP1. Since initial 

classification accuracy is high, the ROC analysis does not markedly 

improve per-gesture results, as in the case of TT1. 
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