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 

Abstract— In the head application of Electrical Impedance 

Tomography (EIT), reconstruction of voltage measurements 

for a conductivity distribution image using an ordinary 

method, the absolute imaging approach, is impossible due to 

the traditional ignorance of modelling error. The modelling 

error comes from the inaccuracy of geometry and structure, 

which are unable to be known accurately in practice, and are 

usually large in head application of EIT. Difference imaging is 

an alternative approach which is able to reduce the size of this 

error, but it introduces other kinds of error. In this work, we 

demonstrate that in situations like head EIT, the nonlinear 

difference imaging approach can reconstruct difference 

conductivity effectively: the reduced modelling error and the 

new errors arising are able to be ignored, because they are 

much smaller than the original modelling error. The magnitude 

of conductivity change in the head-like situation is also 

investigated, and a selection scheme for the initial guess in the 

reconstruction process is also proposed.  

I. INTRODUCTION 

Electrical Impedance Tomography (EIT) is a soft-field 
modality, which is able to reconstruct the spatial distribution 
of conductivity inside a body of interest as an image. 
However, EIT is very vulnerable to noise and error. In the 
case of in vivo EIT, particularly in application to the head, 
noise such as measurement or instrument noise may be 
minimized to a satisfactory level, but this is not possible in 
the case of the modelling error [1]. The various sources of 
modelling error include inaccuracy of the tissue geometries 
and conductivities, and of the position and contact impedance 
of electrodes. In turn, these cause the prediction model (the 
forward model) to yield significant mismatches with real 
measurements [2]. However, these sources of modeling error 
are difficult or impossible to correct.  As a result, modelling 
error is usually ignored in these cases. In a homogeneous 
situation e.g. in [3], reconstruction using the standard 
approach – absolute imaging - is possible due to the small 
size of the error. However, in the case of head EIT this is not 
possible - the modelling error is too large. Additionally, the 
sensitivity of the voltage measurements to changes in the 
conductivity of the brain is extremely low due to the presence 
of the skull and the cerebrospinal fluid (CSF). This condition 
makes this problem severely ill-posed and more sensitive to 
the modelling error.  

The difference imaging approach is an alternative to 
directly reconstructing the difference of conductivity between 
two recording times [3]. The modelling error is reduced by 
the subtraction between two sets of measurement data. 
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However this still suits better the situation where the 
conductivity of the referent state is known. In the case of 
head EIT, the conductivity of the referent state, i.e. the 
conductivity of all head tissues, is impossible to know 
accurately. The reported values of the tissue conductivities 
are usually selected as the reference instead. Therefore some 
small error is usually introduced [4].  

In this paper, the difference imaging approach was 
investigated when it was used in situations where the 
geometry and structure of the subject were modelled 
inaccurately. The conventional formula of this approach was 
transformed into the conventional form of the absolute 
imaging approach, and then nonlinear reconstruction 
algorithms were used for reconstruction. The expectation was 
that this approach is more robust to the ignorance of the 
modelling error term than the absolute imaging approach. A 
selection scheme for the initial guess of the conductivity 
distribution in the reconstruction process is also proposed.  

II. ERRORS IN DIFFERENCE IMAGING APPROACH 

For the recording index i of a measurement time series, 
the measurement model is determined by the discretized 
function U of the conductivity σi in the addition of the 
modelling error function ε and the measurement error em (1). 
However, the modelling error is practically unknown, and it 
is usually ignored [3]. Therefore, the estimation 𝜎̂𝑖 can be 
determined by the absolute imaging approach with the 

regularization function R and the regularization parameter  
as in (2).  
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 When the change in conductivity is small, the modelling 
error is assumed to be only slightly changed, and its effect 
can be reduced by the subtraction between two consecutive 
measurements V as in (3), and the difference voltage vector 

V can then be approximated in the form of a linear 
difference imaging approach (4) where eL is the linearization 
error. Unfortunately the exact σi-1 of the reference state (or 
the previous state), used to compute the Jacobian U'(σi-1) (the 
sensitivity) cannot be known in head EIT. The closest known 
values are the conductivities obtained from literature, denoted 
by σinit. 
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In this work, we hypothesize that the Jacobian U'(σinit) has 
similar characteristics to U'(σi-1). The conductivity difference 
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image can be computed from the difference between σinit and 
the new replacement unknown 𝜎̃𝑖 instead (5). Then when (5) 
is approximated back to the nonlinear function form (6), this 
estimation introduces the error eJ, named the Jacobian 
estimation error (7). Substitution of (7) into (4) then yields 
(8). Last but not least, (8) can be written in the conventional 

form as in (9) - the measurement V in (1) becomes 𝑉̃, and the 

error term becomes eδ, that is the sum of eL, eJ, and ε, 
representing the overall difference imaging error. Similar to 
the absolute imaging approach, due to the unknown value of 
eδ, it is then ignored and the estimation of 𝜎̃𝑖 can be found by 
(10). At this point, any nonlinear iterative reconstruction 
algorithm can be used. The key issue examined here is the 
impact of the ignorance of ε in the absolute imaging approach 

and that of eδ in the difference imaging approach.  
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 Furthermore, in order to estimate the change for the next 
image ( 𝜎̃𝑖+1), the traditional way is to replace 𝜎𝑖𝑛𝑖𝑡  with 
the 𝜎̃ of the previous image in (10). However, 𝜎̃ in some 
particular images might be very inaccurate due to high 
measurement noise, meaning that U'(σi) might be very 
different to U'(𝜎𝑖̃). This phenomenon ruins all the images 
after i. Here, we propose to keep using σinit for the whole 
image sequence.  

III. METHODS AND MATERIALS  

A. Simulation  

A simple head EIT situation was simulated. Two circular 
head-like layerwise models of 170mm diameter were created 
to represent the layers of the scalp, the skull, the CSF, and the 
brain. The models are finite element models (FEM): the first 
model is finer and used as the forward model (with 10,816 
elements) (Fig. 1a), and another is used as the inverse model 
(with 9,216 elements) (Fig. 1b). The thickness and the 
conductivity of each layer were set as in Table 1 – the 
significant differences between the models are in the scalp 
and skull layers. Three test inclusions were simulated as in 
Fig. 1c. Two test schemes were designed: large conductivity 
change and small conductivity change (Table 2). The 
simulated current is 1mApk-pk operated in diametric current 
patterns on a 16-electrode setting, and 208 nearest-neighbor 
measurements are obtained. The signal-to-noise ratio of the 
simulated measurements is set to 50dB. A non-linear 
regularized Gauss-Newton algorithm was used to reconstruct 
the images of difference conductivity (i.e. with/without the 
inclusions) with 10 iterations. The difference images 
reconstructed by the absolute imaging approach and the 
difference imaging approach explained in the previous 

section were compared by using  of 0.1, for the absolute 
imaging approach, and 0.001, for the difference imaging 
approach.  

TABLE I.  THICKNESSES AND CONDUCTIVITIES OF THE MODELS 

 

Layera 

Forward Model Inverse Model 

Thickness 

(mm) 

Conductivity 

(S/m) 

Thickness 

(mm) 

Conductivity 

(S/m) 

Scalp 7 0.58 [5] 8.87 0.4348 [6] 

Skull 6 0.008 [5] 3.54 0.0154 [7] 

CSF 7 1.802 [8] 7.08 1.802 [8] 

Brain radius = 65 0.2849 [9] radius=65.5 0.2849 [9] 

a. Order from the outermost layer to the innermost layer 

TABLE II.  THE SIMULATION SCHEMES 

Testing 

Object 
Location 

Scheme1:  

Small change 

Conductivity (S/m) 

Scheme2:  

Large change 

Conductivity (S/m) 

Inclusion 1 Scalp 0.551 (-5%, -0.03) 0.493 (-15%, -0.09) 

Inclusion 2 CSF 1.748 (-3%, -0.05) 1.623 (-10%, -0.18) 

Inclusion 3 Brain 0.646 (+127%,+0.36) 0.646 (+127%,+0.36) 
 

 
(a) 

 
(b) 

 
(c) 

Figure 1.  (a) Forward model, (b) Inverse model, and (c) the location and 

size of the test inclusions (see Table II). 

B. Phantom Experiments  

Two experiments were performed on a head-shape tank 
(Fig. 2a). The distance between the nasion and the inion, and 
between the left-right preauricular, following the standard 
EEG 10-20 system, are both 360 mm. In the first experiment, 
the tank was filled with 2.7 S/m-saline; meanwhile in the 
second experiment, a honeydew melon peel was put inside 
the tank filled with the same concentration of saline (Fig. 2b). 
The peel was approximately 10mm in thickness, and it was 
naturally dried for a week in order to minimize the moisture 
content. The major radius and the minor radius of the peel are 
85 mm and 70 mm respectively. A FEM head-shape model 
was created from a Magnetic Resonance image having 
93,687 elements (Fig. 2c). However, the two distances 
(nasion-inion, left-right preauricular) of the model were both 
380 mm. The electrode geometry and the melon peel 
geometry were also included in the model. The test inclusion 
is a carrot of 13.5 mm-radius and 28 mm-length. The carrot 
was dipped with its full length into the center of the tank and 
moved to the left then the right for the first experiment. It was 
then dipped into the center of the melon peel and removed for 
the second experiment. The experiments were carried out 
with the fEITER system [10] with 100 frames per second 
recording speed. An electrode array of 32 electrodes was 
attached, and 546 measurements were taken for each record. 
The injected current was 1 mApk-pk at 10 kHz. In order to 
minimize measurement noise, the measurements were 
averaged over a 0.5 second-period (50 records).  

The absolute imaging approach and difference imaging 
approach were investigated here. In addition, the initial 
selection schemes: using the 𝜎̃ of the previous image, and 
maintaining the use of 𝜎𝑖𝑛𝑖𝑡 , were compared in the second 
experiment. The reconstruction algorithm used is the 
regularized General Minimal Residual (GMRes) [11] with 10 



  

iterations, with  set to 1x10-3, for the absolute imaging 
approach, and 1x10-7, for the difference imaging approach. 
Moreover, due to the unknown conductivity of the melon 
peel, the conductivity of the peel was investigated by 
following the methodology in [5] and imposing positivity 
[12] by using a regularization parameter of 1x10-3 and a 
starting guess conductivity of 0.1 S/m. However, the peel 
conductivity was kept unchanged in the reconstruction 
process of the second experiment, since the conductivity of 
the peel is not changed and the sensitivity of the algorithm to 
the peel is extremely high.  

IV. RESULTS 

A. Simulation 

The reconstruction images of the two approaches are 
shown in Fig. 3. Obviously, the difference imaging approach 
is able to detect the inclusions in both schemes. Meanwhile, 
the reconstruction with the absolute imaging approach is 
unable to detect the inclusion even in the small change 
scheme. However, the magnitude of conductivity change at 
the inclusion region with the difference imaging approach is 
unable to reflect the true change – it is lower, and it tends to 
be much lower in the inner layers. Furthermore in the large 
change scheme using the difference imaging approach (Fig. 
3d), the amplitude of the ringing effect on the outermost layer 
(represented by the dark red color) is very high, and also is 
higher than the amplitude of the inclusion in the brain region 
(represented by the lighter red color). 

    
(a) (b) (c) 

Figure 2.  (a) Head-shape tank, (b) Honeydew melon peel put inside (in the 

second experiment) and the test inclusion, a carrot, (c) the inverse tank 
model. 

TABLE III.  THE SIZE OF ERRORS  

Error Scheme1: Small change Scheme2: Large change 

|||| me   0.7176 0.7224 

|||| mee  
 0.0066 0.0231 

 

(a) (b) 

(c) (d) 

Figure 3.  Reconstruction images of the small change scheme (top row ) 

and the large change scheme (bottom row): the absolute imaging approach 

(a,c) and the difference imaging approach (b,d). 

The true sizes of the errors in (1) and (9) are computed 
and shown in Table 3. Obviously, the size of the ignored 
modelling error, computed from (1), is very much higher than 
the size of the ignored difference imaging error, computed 
from (9), by about 30-110 times. It can be also noticed that 
the size of the latter error is increased when the size of 
change increases and these increments are correlated: the ~3 
time-conductivity increment leads to a 3.5 time-error 
increment. 

B. Phantom Experiments  

The four chosen reconstruction images of the first 
experiment (no peel) are shown in Fig. 4. The movement of 
the dipped object is able to be seen only in the images 
obtained from the difference imaging approach; however 
some of the incorrect artefacts remain in the late images. In 
the absolute imaging approach, the color of the changing 
artefacts is meaningless and the change was significantly 
retained even though the object has been removed. Therefore, 
these changing artefacts might be the reconstruction error due 
to the modelling error rather than the reconstructed inclusion. 

Regarding the second experiment (with peel), the 
conductivity of the peel was evaluated first (Fig. 5), and the 
result shows that the best estimation value is 0.0016 S/m, and 
it was used as the initial guess for the reconstruction. The 
chosen images are shown in Fig. 6. The outcome is consistent 
with the first experiment – the dipping is able to be 
effectively detected in the difference imaging approach (Fig. 
6 - bottom row), but it is not detectable in the absolute 
imaging approach (Fig. 6 - top row). However, the 
conductivity change of the detected inclusion is much lower 
than those observed in the first experiment.  

    

     

Figure 4.  Reconstruction images of the first experiment (no peel) from the 

beginning of dipping (no carrot) – the leftmost column - to full inclusion of 
the carrot on the left, then on the right, and finally the carrot was removed – 

the rightmost column: the absolute imaging approach (top row) and the 

difference imaging approach (bottom row). 

 
(a) 

 
(b) 

Figure 5.  The estimation of the melon peel conductivity: (a) the data 

misfit, (b) the estimation conductivity  
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Figure 6.  Reconstruction images of the second experiment (with the peel) 
from the begin to the end of dipping: the absolute imaging approach (top 

row), and the difference imaging approach: using the previous image 

estimate 𝜎̃ (middle row), and with retained use of 𝜎𝑖𝑛𝑖𝑡 (bottom row). 

The selection scheme of the initial guess impacts the 
image accuracy. Selecting the previous estimate 𝜎̃ as the 
initial value yields inaccurate images (the two last images of 
Fig. 6 – middle row). We remark that the incorrect electrode 
artefacts with high amplitude at the boundary are clearly seen 
for both approaches. This is a typical behavior of head EIT 
due to imprecise electrode setting [2]. 

V. DISCUSSION 

It is obvious that the modeling error, which is normally 
ignored or determined as zero mean value in the absolute 
imaging approach, is vital. Unfortunately, in applications 
where the geometry and structure are inaccurate, such as head 
EIT, the modelling error is impossible to avoid due to lack of 
sufficient knowledge. This is the primary reason of the 
reconstruction failure in the absolute imaging approach as 
seen in both the simulation and the experiments. The 
difference imaging approach is able to reduce the size of this 
error, but it introduces a new kind of error which also has to 
be ignored due to inability to measure. The difference 
imaging approach, however, achieves reasonable 
reconstructions in all situations reported here, because the 
size of the ignored error is much lower than the ignored 
modelling error.  

 The unrealistic magnitude of the reconstructed change in 
conductivity of the inclusions and the amplitude of unwanted 
artefacts are an interesting behavior in head EIT. According 
to the simulation, the amplitude of the inclusion in the scalp 
layer is presumably accurate, but the amplitude of the 
inclusions inside the skull layer are substantially lower than 
the true amplitude, in particular in the brain region. The 
phenomenon is caused by the very low sensitivity of those 
regions. Therefore, the true amplitude of conductivity change 
is unable to be imaged in head EIT. This behavior perfectly 
matches the difference imaging approach, because we must 
assume some known conductivities as the conductivity of the 
referent state and this then leads to inaccurate amplitude of 
the estimation. However, one of the greatest concerns is the 
high amplitude-unwanted artefacts on the scalp layer. Even 

though it is very typical to have these artefacts due to the 
presence of noise and error, their amplitude is generally 
higher than the amplitude of the reconstructed inclusions 
situated inside the skull layer. It can also be noticed from the 
simulation that if the size of the changes is high, it will 
produce higher amplitude unwanted artefacts in the scalp 
layer. Therefore, the system which has higher recording 
speed is advantageous relative to the slower one, because the 
change between two consecutive records is likely to be 
smaller. 

The size of regularization parameter is another benefit for 
the difference imaging approach. Due to the substantial 
reduction of the error, the regularization does not need to be 
high. A chosen value from a record tends to be reusable for 
the whole sequence of records. Unlike the absolute imaging 
approach, where many values (even though they are pretty 
high) might yield a singular matrix, and are unable to be 
solved; it is then very difficult to find a value which is able to 
be reused for the other records. 

The selection of initial value of conductivity is a critical 
issue for reconstructing a long recording. The conventional 
methodology of using the estimate of the previous record is 
vulnerable to short-term high-noise on some records or 
inaccuracy of estimation. This leads to a wrong estimation 
beginning from the high-noise record to the last record. 
Therefore in the head EIT, using the same initial value for the 
whole sequence of records is more robust in practice.   
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