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ABSTRACT

In this article, we present a novel scheme for segmentingnthe
age boundary (with the background) in optoacoustic smathah

better noise performance. These edge detection methodshlean
demonstrated to be useful for optoacoustic images and gwetbfor
calibration of reconstruction parameters by Mandal ¢&5jalMore
sophisticated techniques were proposed by Tabb and AhLign{b

in vivoimaging systems. The method utilizes a multiscale edge dery|jowed by Ma and Manjunath [7Jwho developed the concept of
tection algorithm to generate a binary edge map. A scalerdepe gesigning a vector field for edge detection. [l [6] the vedieid

dent morphological operation is employed to clean spuraiges.
Thereafter, an ellipse is fitted to the edge map through cainsd
parametric transformations and iterative goodness oflfititations.
The method delimits the tissue edges through the curvefittiodel,
which has shown high levels of accuracy. Thus, this methatbles
segmentation of optoacoutic images with minimal humanrvete-
tion, by eliminating need of scale selection for multisqaiecessing
and seed point determination for contour mapping.

is created by analyzing the neighborhood of a pixel, wheeesthe
and spatial scale of the neighborhood were determineddimaily
by an homogeneity parameter, and is adaptively determimed o
pixel to pixel basis. The edge flow method suggested by [f}es
the color and textural information of images to track change
directions, creating a vector flow. This method detects Haties
when there are two opposite directions of flow at a given looat
in a stable state. However, it depends strongly on colorimédion

Index Terms— Image segmentation, Photoacoustic effects, Im-and requires a user defined scale to be input as a control peam

age edge detection, Curve fitting

1. INTRODUCTION

In a follow up work by [2], a methods was demonstrated which
eliminates the need of scale selection and potentially svavith
gray-scale images. We have developed a new segmentatitioanet
for OAT by integrating the multiscale edgeflow, scale spaiffe-d
sion and morphological image processing. The suggesteiisoalé

Optoacoustic Tomography (OAT) has emerged in the last @ecadedge detection method is illustrated in section 2, and theqasing

as a new hybrid bioimaging modality combining the advardanfe
acoustical detection and optical absorption contrast. P@&Vides
structural as well as functional information of biologi¢asues in
two (2D) and three (3D) dimensions, with resolution and feaates
representative of ultrasound [1]. Research efforts in OA¥ehbeen
directed towards the development of new hardware compsiaart
inversion methodologies allowing increasing imaging sieed res-
olution, as well as on investigating potential biomedigailecations.
Recently developed OAT cross-sectional systems enableviioaly
small animalin-vivoimaging. The unique capabilities offered open
up the unexplored domain of post-reconstruction imageyaisafor
this modality. Segmentation is one the most challengingstas
image processing, and the relatively low intrinsic corttsback-
ground structures (compared to digital photography) andtedid
view problems of OAT increase the complexity involved. Gleal
experiments on non-human primates demonstrate that carople
jects are perceived by vision system in a multiscale maramet are
tuned from coarse scale to finer scal€s [2], we use the infimmas
a basic assumption in our study. For the edge detection atdndl
scales, the Sobel operator, which approximates the gradighe
image intensity function, or the Canny edge detector [3]clvhises
a feature synthesis step from fine to coarse scales, are caymo
employed. Multiscale edge detection, a rich area of inténdsself,
can enhance the performance of edge detection in a fixedr{akig
scale. For example, the Perona-Malik flow (anisotropiaudifin)[4]
gives a successful formulation of scale-space adaptiveosimy
function, leading to better preservation of edges whileéeghg a

results of OAT images are displayed in section 3. In sectidn 2
we discuss about delineating the tissue boundaries in OAIGhw
is another challenging issue we aim to tackle. Due to illamin
tion conditions and limited view considerations in the dé&tm,
the reconstructed images can be affected by open edges and fu
boundaries. Traditional edge linking algorithms may thaih tio
provide satisfactory segmentation. Thereby, we suggesivaln
curve fitting model that delimits the tissue-backgroundrutaries
in OAT images. We further characterize the goodness of fit{iGo
by using Dice coefficient metric (DM), an standard evaluatioa-
trix. The GoF is employed to iteratively improve the segraént
performance.

2. METHODS AND ALGORITHMS

The proposed methodology aims at providing a framework of OA
image segmentation and reducing the parameters that néedie
fined to achieve a segmented boundary between imaged lialogi
tissue and acoustical coupling medium. Details on the ingagétup
and the implementation steps of the algorithm are given énfoly
lowing subsections.

2.1. Imaging Setup and Protocol

A commercial whole-body small animal multispectral optmastic
tomography (MSOT) scanner (Model MSOT256-TF, iTheraMelic
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GmbH, Munich, Germany) was used for data acquisition. Thesc
ner consists of a 256-element array of cylindrically focupéezo-
composite transducers with 5 MHz central frequency. Thestra
ducer array covers an angle of approximately 270 degreehasd
a radius of curvature of 40 mm. Light excitation is provideiihw
the output laser beam from a wavelength-tunable opticarpatric
oscillator (OPO)-based laser, which is shaped to attagitype uni-
form illumination on the surface of the animal (mouse) by nseaf
a fiber bundle with an output arranged on annular illuminasiots.
The system allows simultaneous acquisition of the signatetated
with each laser pulse, which are digitized at 40 MS/s. Thertte
scanner is capable of rendering 10 cross-sectional imagreseg-
ond. For acquisition of the entire mouse cross-sectiondaber

wavelength was set between 690 and 900 nm and the signals were
averaged 10 times in order to improve SNR performance. The op

toacoustic images representing the distribution of optibaorption
were reconstructed using a non-negative constrained riadeld
inversion algorithm([B]. Prior to reconstruction, the si¢gwere ini-
tially band-pass filtered with cut-off frequencies betw@®eh and 7
MHz for removing low-frequency offsets and high-frequemgyse.
The reconstructed images have a 200 x 200 effective pixelues
tion (for a reconstruction area of 20 x 20 myand are represented
in gray-scale (normalized 0-255 level for image processipgli-
cations). The animal handling for imaging applications evper-
formed in full conformity with institutional guidelines drwith ap-
proval from the Government of Upper Bavaria (Germany).

2.2. Edge-flow vector field and edge detection

The general trend in multiscale edge detection is to defineake s
a-priori and then estimate the scale locally, however, Sigee and
Manjunath [2] suggested a geometrically inspired methad disti-
mates the edges that exists both in coarse and fine scaldecatize
them in the fine scale. In this article, we propose a modifiedior
of the edgeflow methods][[7] 2], by integrating anisotropftudion
and scale-space dependent morphological processingrieei@nt

application on OAT images. The edge flow algorithm definesca ve

tor field, such that the vector flow is always directed towatts
boundary on both its sides. The classical edge flow modétesila
vector propagation stage. In the current method, the velafirec-
tional differences are considered for computing gradiectar. The
gradient vector strengthens the edge locations and traekditec-
tion of the flow along x and y directions. The search functiooks
for sharp changes from positive to negative signs of flowatioas
and whenever it encounters such changes, the pixel is thbslan
edge point. The magnitude of the change is the decidingrfaeto
hind the edge strength, which is reflected as edge intensithid
final edge map. The vector field is generated explicitly frame fio
coarse scales, whereas the multiscale vector conductiompigitly

from coarse to finer scales. Thus, the algorithm is suitadiiéotal-
izing the edges in the finer scales, which is achieved by priege
only the edges and neighborhoods that exists in severadss(dé-
pending on the threshold employed), and suppressing &sathat
disappear rapidly with increment of scales. The workflowstfe
vector field generation and morphological processing éustiited
in the Algorithm 1. The pseudocode further outlines the psscof
geometric curve fitting. In the current implementation, Geussian

in subsequent edges, as used by Berghald [9].

Algorithm 1 Multiscale Edge Detection and Curve Fit
I(x,y) «+ image
s1, S, « smallest and largest scale of the image respectively
As = 0.5 be the sampling interval for each scale
s =581 > initialize book keeping
U, Unew + VI(z,y) > Gradient Vector
Unew < VeNI(z,y) + c(z,y,t)AI > Anisotropic Diffusion
while s; < s, do

s+ s+As

M +— max(|| U |)

Unew < VI(z,y) atscale s

Upew < VeNI(z,y) + c(z,y, ) AT

for <each pixel in image>do

if || U(z,y) |< M/C then > Cis thresholding constant

U(IE, y) = Unew (:E, y)

—

else ifabs(arctan(U(z,y), Unew (z,y))) < 7/4 then
U(IE, y) = U(l’, y) + Unew (:E, y)
else_ .
. U(:E,y) = U(l’,y)
end {if, for }
The finalU is the edge flow vector we are interested in
U « Binarize(U)
Enhance/ by performing morphological operations
for gradient magnitude image in scale s, do
if n > 2, use strel— > Opzx, disc
else > structural element(strel)
strel— > lpz, disc then

Apply Erosion operation,Closeto recover edges

end for

Obtain centroids fronbinary edge-map

Obtain minBoundCircle and minBoundEllipse on centroids

Calculate Dice Coefficient > Iterate over scales
end while
The final boundary is given by minBoundCircle and or minBound
Ellipse after GoF maximization.

The algorithm searches the edges in finer scales and steength
them with the edges recovered from higher scale. The honeagesn
regions have vectors of zero length, so the detected edgeestsg
grow in thickness (and often strength) as we move from lower t
higher scales. Some edges do not exist in lower scale, bustian

be significant. To decide on the same and reduce noise we put a

boundary condition - and when the maximal edge strength €M) i
greater than a heuristically predefined constant (C) -thjegdre re-
tained, or else they are discarded.The primary objectieg@plying a
edge detection is to delineate the boundary of the imagestband
differentiate it from the background. But often in optoastics, the
signal originate from the impurities or inhomogenitieshirig cou-

pling medium. Further, noisy background is present in retrocted
images (lower boundary in Fig 1.a) due to limited view, andrsh
comings of inversion methodologies. This noises are ofteang

enough to be detected by edge detection algorithm as truesedg
Thus, we use an anisotropic diffusion process to furthearclep

offset (o) is also lowered for the gray-scale OAT images. For thethe image, the diffusion process smoothens the image withqut

acquired in vivo OAT images, optimum performance was actdev

pressing the edges. Thereafter a non-linear morphologrocaless-

with o = 3. We analyze the images between scales s=1, and s=8)g is done on the binary (diffused)edge mask. We take arpstei-

where s=1 is the starting (finest) scale. The interval is $adghat
sub-pixel resolutionfs = 0.5] for tracing the dislocation of edges

sampling approach (0.5 px), rendering the operation is et
beyond the second scale level. The morphological maskfireif-



tially chosen at different scales. Initially, the image ieded with  scales, then we can infer that it corresponds to real eddess, The
a disc structuring element to remove noisy patches, busdt #lins  vector directions were checked in both finer and coarseesgcal a
the edges. To recover the edges a closing operation is exgeuth ~ way that when there is a match, the designated edges wengtstre
smaller structural element for erosion and a bigger eleifgg) for  ened. The construction of the algorithm allows to detectinitel

dilation. edge points from the finer scales, and reinforce then as we foov
the larger scales. The finer scales are more immune to naisthan
2.3. Parametric shape model fitting and Goodness of fit use of a non-negative constraint during the image recoctarupro-

cess prevents unnatural movement of the vector field (datyrdue
In sectioh2.P we discussed about detection of edges, $ewdfmrs  to absence of undesired negative values). Thus the edgegetbin
have utilized the edge-flow vector for segmentation. In OAF i the finer scales are very significant to recover object batesizand
ages we see formation of smaller edge clusters and openurento are helpful in segmentation of OAT images. In Figure 2, weasho
Thus, getting a ideal segmentation using edge linker se@erform  the performance of multiscale segmentation (2c) along thitredge
poorly. However, given the fact that our current problemahiie-  map recovered using Sobel operator (2b). The improvemethtein
quires segmenting the image into only two classes -imagbackt  edge detection performance by considering multiple scaeoger
ground, we follow a simple curve fitting approach. The pregbs single scale in Sobel) is evident in the combined multiseaige
method first generates the centriods for edge clusters amtth map ¢ = 1 — 3). Further, a closer observation reveals that the
to fit on a geometric pattern (deformable ellipse) iterdgitrough  morphological processing have successfully eliminatedspurious
a set of parametric operations. A typical scenario in cutiidi  edges formed beyond the tissue boundary (Fig. 2d). FirialFig-
is when the data is a best fitted, but some data points liesdeuts ure 2(d-e) we show the calculated centroid clusters olddioen the
the curve, as we take an interpolated spline fitting criterim our morphologically processed binary edge map, and the elfiftsgy
approach, we modeled an inclusion criterion which encladleckn-  model applied to this centroids respectively.
troids and create forms a closed curve. Theoretically, aivdr a Thereafter, we computed the goodness of fit using quanttati
convex hull with the centroids on a perimeter and approxéniit measures, viz. DM and RI, with ground truth (manual segmen-
to the nearest curve. In some datasets, we see presenceaftthe tation) as reference. In Table 1 we show the performancehleof t
lier centroids which significantly biases the curve (duergspnce  curve fitting using the DM[{1). Theoretically, DM values abov
of the inclusion Criterion) Ieading to erroneous flttlngéiﬂ)ld such 0.7 are considered to represent a good Segmentation r&Bd'US-
complications, the values of the centroid positions areréii for  ing the proposed methodology DM values between 0.90 and 0.96
squeezing out outliers through a median filter, and theryaeelifor  were achieved. Morphological processing and increasiraesc
generating the shape models which match the object boufitiery space depth was employed by tracking the correspondinggelan
goodness of fit (GoF) is calculated using the average DM, ivisic  jn GoF value to improve noise performance when outlier catr
a measure of contour Overlap utIIIZIng the area under tregifittirve are present_ |mpr0vements in DM values was observed in most

(A), manually segmented region (M), and their intersectidM al-  regions by adding anisotropic diffusion and morphologfiggring
ways vary between 0 and 1, with DM 7 being considered a good wjith iterative GoF optimization, except for the kidneyksph zone
segmentation[10]. The DM can be expressed as: where the DM decreased after filtering, although DM valuesvab
2| (AN M) | 0.95 both with and without secondary filtering were achieedm
DM = TAI+ M| (1) figure 3, it is be clearly inferred from both DM and RI that the

improvements in the curve fit performance is observed ines2al
The GoF measure is used to iteratively improve the segnientat followed by a marginal change in scale 3. So, for most pratfiar-
performance - the images are investigated at deeper sealessand ~ Poses and reducing computational overhead, as scale depttan
the morphological diffusion step is decided based on the @dife. ~ be chosen for OAT imaging experiments and image segmentatio
We break away from the loop once a stable GoF is obtained and
going to lower scale space negatively impact the calcul@iefe val-
ues.The values for Rand Index (RI), which gives a measuréeref s
ilarity and statistically used to quantify accuracy arealalculated

and plotted in Figure 3.

3. RESULTS AND DISCUSSION

For testing and standardization of the introduced imagegqssing
framework, a database of 30 datasets for 3 different anatine-
gions in mice (10 for each region) was created. Each indalidu
dataset represents signals (averaged 10 times) acquingul tat 6
different positions and at 8 different wavelengths (betw&20-900

nm). Since manual segmentation of each dataset was needed fo
computing the performance of the algorithm vis-a-vis gbtnuth,

the number of datasets was scaled down. Thereby, 4 datasegs w
considered from each anatomical regions, namely braier nd
kidney/spleen, for computing the goodness of fit parametéirse . o . )
proposed algorithm demonstrated good edge recovery peafae. Fig. 1. Reconstructed. optoacoustic image using non-negative con
As shown in Fig 1, the algorithm weighted the edges that a[ppea's_tralned model based inversion (a), and (b-d) edges ddtattaul-

in multiple scales and reduced the spurious edges. The atisam UPle scaless = 1,2, 3 respectively.

made byl[7] is that if the vector direction change matchesiiitipie




Fig.

0.5 S

- Non Optimised GoF DC
-Optlmlzed GoF DC

|:| RandIndex

Scalel Scale2 Scale3

3. GoF trace and the standard deviation for the

torso(kidney/spleen region) scans of mouse. (Total datize =
12 (z-slices in whole body small animal tomographic scayrear-
quired from 2 different micejn-vivo

[1]

(2]

Fig. 2. Reconstructed Optoacoustic image with non-negative con-3j

strain(a), edge-maps generated by Sobel operator (b),iddaik
(Edgeflow) map (c)and (proposed) Morphological processetti-m
scale edge map (d) are shown. In (e) computed centroids fdga e
clusters are shown in blue, and (f) illustrates the curviafjitnethod

applied to the centroids (fitted curve marked in red). [Seadenm]

Table 1. Efficacy of Curve Fitting

Dice Coefficient Metrics

Regions Non-optim  GoF-Optim  Rand Index
Brain 0.9387 0.9440 0.9771
Liver 0.9093 0.9447 0.9396
Kidney/Spleen  0.9606 0.9571 0.9672

4. CONCLUSIONS

In this article, a method of delineating the boundary of aptaustic

small animals images using a multiscale edge detectiomitigoin

combination with geometrical curve fitting has been presgnlt is
noteworthy that the method employed is self-determiniatid re-
quires minimal human intervention. The optoacoustic dignage

datasets can be very large given the 5D nature of this mgdalil,

automating the image formation and analysis workflows isrg ve
challenging and important problem. Thus, the algorithmg e
workflows demonstrated herein are expected to be helpfulin a

tomating optoacoustic image segmentation, with imporsagnifi-
cance towards enabling quantitative imaging applications
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