Abstract:
The aim of ongoing research is to develop a multi-scale multi-physics computational framework for modelling of human touch in order to provide understanding of fundamenta...Show MoreMetadata
Abstract:
The aim of ongoing research is to develop a multi-scale multi-physics computational framework for modelling of human touch in order to provide understanding of fundamental biophysical mechanisms responsible for tactile sensation. The paper presents the development of a macro-scale global finite element model of the finger pad and calibration of applied material models against experimental results using inverse method. The developed macro model serves as a basis for down-scaling to micro finite element models of mechanoreceptors and further implementations and applications as a virtual tool in scientific or industrial applications related to neuroscience, haptics, prosthetics, virtual touch and packaging.
Published in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 25-29 August 2015
Date Added to IEEE Xplore: 05 November 2015
ISBN Information:
ISSN Information:
PubMed ID: 26736410