
  

Abstract— The Shannon entropy theory was applied to the 
Choi-Williams time-frequency distribution (CWD) of cardiac 
time series (RR series) in order to extract entropy information 
in both time and frequency domains. From this distribution, 
four indexes were defined: (1) instantaneous partial entropy; 
(2) spectral partial entropy; (3) instantaneous complete 
entropy; (4) spectral complete entropy. These indexes were 
used for analyzing the heart rate variability of ischemic 
cardiomyopathy patients (ICM) with different sudden cardiac 
death risk. The results have shown that the values of these 
indexes tend to decrease, with different proportion, when the 
severity of pathological condition increases. Statistical 
differences (p-value < 0.0005) of these indexes were found 
comparing low risk and high risk of cardiac death during night 
and between daytime and nighttime periods of ICM patients. 
Finally, these indexes have demonstrated to be useful tools to 
quantify the different complex components of the cardiac time 
series. 

I. INTRODUCTION 

Cardiovascular diseases represent the most common 
cause of death worldwide [1] and their high incidence has 
motivated the development of quantitative markers, in order 
to identify the presence of cardiac pathologies and the risk of 
suffering cardiac death. 

Several studies used heart rate variability (HRV) analysis 
as a non-invasive method for diagnosis of a large number of 
cardiovascular diseases [2], which may involve changes in 
the autonomic nervous system modulation and tone, thus 
facilitating the diagnosis and prognosis of cardiopathies and 
neuropathies. Unfortunately, the stratification of risk groups 
in patients with heart failure is an issue that has yet to be 
resolved. 

Methods for quantifying HRV by means of the RR series 
(time intervals between consecutive heart beats) are based on 
time domain, frequency domain, geometric and nonlinear 
techniques [2-5]. However, given the intrinsic nonlinear 
nature in time and frequency of the cardiac regulatory 
mechanisms, a more insightful description in nonlinear time-
frequency representation could help to describe the 
dynamical changes of HRV.  

 
 

 

The classical Shannon entropy measures the average 
information provided by a set of events and proves its 
uncertainty. This measure is shown as a natural candidate for 
quantifying the complexity of physiological signals. Also the 
level of chaoticity may be measured using entropy. Higher 
entropy represents higher uncertainty and a more irregular 
behavior of a signal. Entropy can even explain how linked 
complex systems interact and exchange information. The 
quantification of the magnitude of this information becomes 
a goal in the study of physiological signals. 

The time-frequency representation (TFR) technique 
generalizes the concept of the time and frequency domains 
to a joint time—frequency function that indicates how the 
frequency content of a signal changes over time [6,7]. 
Complexity studies based on entropy functional take 
advantage of the analogy between signal energy densities 
and probability densities [8]. While the instantaneous and 
spectral amplitudes behave as one-dimensional densities of 
signal energy in time and in frequency, TFR tries to act as 
two-dimensional energy densities in both time and frequency 
[9]. Based on these concepts, the TFR information estimated 
by a probability density function of a signal either in time or 
in frequency domain permits to define new indexes to 
quantify the complexity content of a signal. 

Four indexes [10] were defined by calculating entropy of 
the Choi-Williams distribution (CWD) [6] with respect to 
time or frequency, by using the probability mass function at 
each time instant taken independently or by using the 
probability mass function of the entire CWD. 

II. MATERIALS AND METHODS 

A. Databases and Preprocessing 

Synthetic Signals 
In order to study the performances of the proposed 

indexes, 200 synthetic signals were designed. A Ssignal 
process, used in previous studies [11,12], was defined as 
Ssignal = (1 − z)x + zy, where z is a random variable that is 
equal to 1 with probability p and equal to 0 with probability 
1−p. The parameter p varied linearly from 0.9 to 0.1. The 
variable x is a periodic sequence with a frequency 
component of  0.0975 Hz, and y the Hx obtained from 
Henon map [13] with chaotic behavior (1), using the canonic 
values a = 1.4 and b = 0.3, and taking Hx(0) = 0.5 and Hy(0) 
= 0.5 as initial conditions.  

1 1
1 																												

 (1) 

Hence, these synthetic signals evolved from chaos to 
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periodicity. The synthetic signals had a length of 30000 
samples with a sampling frequency of 1 Hz.  
 

HRV Series 
Patients with Heart Failure were analyzed in the present 

work. All these patients had symptomatic chronic heart 
failure (NYHA class II-III) and were treated according to 
institutional guidelines. The investigation was conforming to 
the recommendations of the Declaration of Helsinki, the 
study was approved by the Ethical Committee of the 
institution and all subjects gave their written informed 
consent before participation. A total of 150 patients with 
ischemic cardiomyopathy (ICM) at risk for cardiac death 
were enrolled in the present work. The inclusion criteria 
were: sinus rhythm, symptomatic chronic heart failure with 
NYHA functional class II or III, and ischemic etiology of 
heart failure.  

After a follow-up of three years the following analysis 
was due: 138 survivor patients (SV) as a low risk (LR) group 
and 12 patients that suffered sudden cardiac death (SCD) as 
a high risk (HR) group. SCD patients were aged-matched 
with SV group, with 64.1±1.13 year old and 91.8% male. 

The RR series, intervals between consecutive beats, were 
obtained from 24h ECG-Holter recordings with a sampling 
frequency of 200 Hz. Equidistant time series were obtained 
by linearly interpolating the RR interval series at a 
resampling rate of 1 Hz. Furthermore, an adaptive and the 
ASEF filter [14] were applied to the RR series (figure 1a) in 
order to reduce the artifacts while frequency content is 
preserved (figure 1b). The 24h RR series were analyzed and 
also in two periods, 10 hours during daytime (10h-20h) and 
10 hours during nighttime (20h-6h). 
 

 (a) 

 (b) 
Figure 1.   (a) Non-filtered and (b) filtered RR series by using ASEF 

 

B. Time-Frequency Representation 

Choi-Williams distribution CWD(t,f) [6,7] is obtained by 
convoluting the Wigner distribution (2) 

, 2⁄ 	 ∗ 2⁄  
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and the CW exponential (3) 
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where parameter σc  [15] permits CWD to reduce the cross-
terms and to preserve marginal properties and instantaneous 
frequency.  

The spectral power is defined as 

,  
 

(4) 

Finally, the ,  was normalized by the total power 
calculated as the area under SpPow( f ). 

Furthermore, the classical spectral power entropy 
(EnCLsp) is defined as  

, ,  
 

(5) 

 

C. Instantaneous Entropy and Spectral Information Entropy 

The probability mass function (PMF) was defined for a 
time instant tk with respect to frequency as pTPMF( ,i) = 
PCWD( , 	|	 	  and for frequency value fk with 
respect to time as pFPMF(i,fk) = PCWD( , 	|	 , 
after the quantization of the CWD(tk , f) and CWD(t, fk), 
respectively, in n=32 equidistant levels.  

The two distributions, quantization-time pTPMF( ,i) and 
quantization-frequency pFPMF(i,f), were obtained for each 
time instant and frequency value. In this way, the two 
distributions represent partial (p) distribution of PMF with 
respect to time or to frequency, since in each time instant (tk) 
and frequency value (fk) the PMF is only related to that time 
instant (tk) or frequency value (fk). In a similar way, the 
complete (c) PMF distribution quantization-time and 
quantization-frequency were calculated as cTPMF( ,i) = 
PCWD( , 	|	 	  and cFPMF(i,f) = 
PCWD( , 	| , respectively, after the quantization 
of the CWD(t,f) in n = 32 equidistant levels. 

From this proposed methodology, four indexes were 
defined [10]: 
- Instantaneous partial entropy 
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- Spectral partial entropy 
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- Instantaneous complete entropy 
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- Spectral complete entropy 
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All measures were calculated in the following frequency 
bands: Ultra-low frequency (ULF: <0.003 Hz), very low 
frequency (VLF: 0.003–0.04 Hz), low frequency (LF: 0.04-



  

0.15 Hz), high frequency (HF: 0.15-0.4 Hz) and total band 
frequency band (Tot). 

Mean (m) of EnPAins, EnPAsp, EnCOins, EnCOsp and 
EnCLsp, respectively, were calculated from the analyzed 
signals. 

 

D. Statistical Analysis 

A non-parametric test, the Mann-Whitney U test, was 
applied considering two groups: LR versus HR groups. 
Wilcoxon test was applied to analyze the statistical 
differences between daytime and nighttime periods. A 
significance level p-value < 0.05 was considered as 
significant. A discriminant linear function was built for 
every individual index in order to classify the subjects. The 
sensitivity (Sen), the specificity (Spe) and the area under the 
curve (AUC) were taken into account in this statistical 
analysis using leave-one-out cross-validation. 

III. RESULTS 

Figure 2 shows the results obtained applying the 
proposed methodology to a synthetic signal (Ssignal). 
Classical spectral power entropy (EnCLsp) (Figure 2a) does 
not show significant changes when the signal passes from a 
chaotic to a periodic behavior. On the contrary, EnPAins and 
EnCOins decrease from chaos to periodicity. During chaotic 
behavior EnPAins is higher than EnCOins, and then the two 
measures approach each other and converge in the zone with 
more periodicity. In Figure 2b, EnPAsp and EnCOsp show 
the location of the frequency component as the classical 
spectral power does. While EnCOsp maintains stable values 
for the remaining frequencies, EnPAsp presents irregular 
oscillations in the entire spectrum. Values of EnPAsp are 
higher than EnCOsp except for the frequency component of 
the signal f=0.0975 Hz. 
 

 
(a) 

 
(b) 

Figure 2.   Synthetic Signal: (a) instantaneous complete entropy 
(EnCOins, red), instantaneous partial entropy (EnPAins, green) and 

classical spectral power entropy (EnCLsp, blue); (b) spectral complete 
entropy (EnCOsp, red), spectral partial entropy (EnPAsp, green) and 

classical spectral power (blue). 
 

Table I contains the results of the mean values 
(mean±std) of those proposed indexes (EnPAins, EnPAsp, 
EnCOins and EnCOsp) with the best statistical classification 
power, calculated on each RR series of patients from HR and 
LR groups, and considering daytime, nighttime and 24h 
periods. The indexes EnCOins(Tot), EnCOsp(LF) and 
EnCOsp(HF) presented the highest statistically significant 

differences during nighttime period when LR and HR groups 
were compared. This behavior was also observed during 24h 
periods. The index EnCOsp(LF) permitted to classify the 
patients with a Sen=60.1%, Spe=83.3 % and AUC= 0.781. 
The analysis performed during daytime period presented 
smallest statistical differences (p-value<0.05) in those 
indexes, compared with nighttime and 24h periods (p-
value≤0.005). Only EnCOins(Tot) and EnCOsp(LF) could 
differentiate between LR and HR groups during daytime 
period. As observed in Table I, all these proposed indexes 
present higher values during LR group than HR group, 
indicating a highest complexity in time and frequency of the 
RR series in the LR group. 

 
TABLE I 

STATISTICAL MEASURES FOR THE INSTANTANEOUS ENTROPY AND 

SPECTRAL ENTROPY ANALYSIS: (HR) HIGH RISK AND (LR) LOW RISK OF 

SUFFERING SUDDEN CARDIAC DEATH 
Indexes LR HR p- 
Mean(m) mean±std mean±std value 
Daytime period    
EnCOins(Tot) 0.435±0.0271 0.252±0.0673 0.049 
EnCOsp (LF) 0.397±0.0305 0.202±0.0810 0.041 
EnCOsp(HF) 0.233±0.0256 0.0849±0.0367 n.s. 
EnCOsp(VLF) 2.08±0.067 1.65±0.321 n.s. 
Nighttime period  
EnCOins (Tot) 0.593±0.0264 0.327±0.0466 0.004 
EnCOsp(LF) 0.595±0.0318 0.245±0.0463 0.001 
EnCOsp(HF) 0.303±0.026 0.099±0.0239 0.005 
EnCOsp(VLF) 2.84± 0.0606 2.35±0.314 n.s. 
24h period    
EnCOins(Tot) 0.479±0.0132 0.348±0.0397 0.008 
EnCOsp(LF) 0.466±0.0156 0.296±0.0505 0.002 
EnCOsp(HF) 0.234±0.0119 0.132±0.0277 0.008 
EnCOsp(VLF) 2.41±0.0399 2.16±0.176 n.s. 

 
TABLE II 

STATISTICAL MEASURES FOR THE CLASSICAL SPECTRAL POWER ENTROPY 

ANALYSIS: HR, HIGH RISK AND LR LOW RISK OF SUFFERING SUDDEN 

CARDIAC DEATH 
Indexes LR HR p- 

value Mean(m) mean±std mean±std 
Daytime period   
EnCLsp(HF) 1.40±0.0307 1.33±0.103 n.s. 
EnCLsp(LF) 1.42±0.0299 1.34±0.100 n.s. 
EnCLsp(VLF) 1.60±0.0295 1.48±0.1110 n.s. 
Nighttime period   
EnCLsp(HF) 1.83±0.0336 1.54±0.163 0.020 
EnCLsp(LF) 1.85±0.0335 1.55±0.163 0.021 
EnCLsp(VLF) 2.06±0.0337 1.73±0.178 0.019 
24h period   
EnCLsp(HF) 1.58±0.0189 1.44±0.0793 n.s. 
EnCLsp(LF) 1.60±0.0188 1.45±0.0789 0.049 
EnCLsp(VLF) 1.79±0.019 1.63±0.0837 n.s. 

 

The results of the classical spectral power entropy 
(EnCLsp) are presented in Table II. It can be observed that 
these indexes also present higher values during LR group 
than HR group, indicating a highest complexity in frequency 
of the RR series in the LR group. However, it is during 
nighttime that the main statistical differences are presented 
(p-value<0.05). Finally, comparing the statistical results 
from Tables I and II, an increased advantage of using the 
proposed indexes EnPAins, EnPAsp, EnCOins and EnCOsp 
can be observed. 



  

The results obtained for both types of indexes, the new 
proposed indexes and the classical spectral power entropy 
indexes, when daytime and nighttime periods were 
compared are presented in Table III. In this case, the ultra-
low frequency band in EnPAins and EnCOsp indexes could 
differentiate between daytime and nighttime periods (p-
value<0.0005). Figures 3a-3b show the Choi-Williams 
distribution CWD(t,f) of the RR series corresponding to this 
ultra-low frequency (ULF) band of a patient belonging to the 
survivor group (LR), from the daytime and nighttime 
periods, respectively. Lower values of the proposed new 
indexes (EnPAins(Tot), EnPAins(ULF), EnCOsp(VLF), 
EnCOsp(ULF)) and the classical spectral power entropy 
indexes (EnCLsp(HF), EnCLsp(LF), EnCLsp(VLF)) are 
observed during daytime compared with nighttime periods, 
p-value<0.0005. 

 

 
 

(a) 

 
 

(b) 
Figure 3.   Choi-Williams distribution of the RR 

series for the ULF band: (a) daytime period and (b)  
nighttime period 

 
TABLE III 

STATISTICAL MEASURES FROM THE ANALYSIS OF THE PROPOSED INDEXES 

COMPARING HRV PERIODS IN ISCHEMIC CARDIOMYOPATHY PATIENTS 
Periods Daytime  Nighttime  
Indexes 
Mean(m) 

mean±std mean±std 

EnPAins (Tot) 0.435±0.0147 0.639±0.0164* 
EnPAins (ULF) 1.616±0.0295 1.982±0.0302* 
EnCOsp (VLF) 2.05±0.0672 2.80±0.0617* 
EnCOsp (ULF) 1.12±0.0319 1.24±0.0307* 
EnCLsp (HF) 1.39±0.0294 1.81±0.0339* 
EnCLsp (LF) 1.41±0.0286 1.82±0.0339* 
EnCLsp (VLF) 1.59±0.0286 2.03±0.0346* 

*p-value<0.0005 
 

IV. CONCLUSIONS 

The results presented in this work have confirmed that 
the new approach to calculate TFR entropy takes advantages 
compared with the classical spectral power entropy. The new 

proposed entropy indexes (EnPAins, EnPAsp, EnCOins and 
EnCOsp) tend to decrease in high risk group of suffering 
sudden cardiac death in ischemic cardiomyopathy. Thus, 
confirming the paradigm that pathology reduces the 
complexity of the cardiovascular control. Finally, the degree 
of complexity of this cardiovascular control depends on the 
physiological state of the subject (daytime versus nighttime 
period) and on the severity of pathological condition. 
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