
  

  

Abstract — Since the Marr-Albus model, computational 
neuroscientists have been developing a variety of models of the 
cerebellum, with different approaches and features. In this 
work, we developed and tested realistic artificial Spiking 
Neural Networks inspired to this brain region. We tested in 
computational simulations of the Vestibulo-Ocular Reflex 
protocol three different models: a network equipped with a 
single plasticity site, at the cortical level; a network equipped 
with a distributed plasticity, at both cortical and nuclear levels; 
a network with a pathological plasticity mechanism at the 
cortical level. We analyzed the learning performance of the 
three different models, highlighting the behavioral differences 
among them. We proved that the model with a distributed 
plasticity produces a faster and more accurate cerebellar 
response, especially during a second session of acquisition, 
compared with the single plasticity model. Furthermore, the 
pathological model shows an impaired learning capability in 
Vestibulo-Ocular Reflex acquisition, as found in 
neurophysiological studies. The effect of the different plasticity 
conditions, which change fast and slow dynamics, memory 
consolidation and, in general, learning capabilities of the 
cerebellar network, explains differences in the behavioral 
outcome.  

I. INTRODUCTION 

In computational neuroscience, the cerebellum is one of the 
central nervous system structures that has been studied in 
more details, since it has a clear and organized anatomical 
structure and for its crucial role in motor learning. The 
cerebellum is capable of expressing learning in both 
temporal association of discrete behavioral responses and in 
generation of voluntary and reflex movements [1]–[3]. In 
motor adaptation, it is supposed to work as a predictive 
controller and its learning capabilities are ascribed to long-
term synaptic modifications: Long-Term Depression (LTD) 
and Long-Term Potentiation (LTP) [4]. These synaptic 
changes involve different synaptic connections, at various 
levels of the cerebellar circuit. In particular, LTP and LTD at 
Parallel Fibers/Purkinje Cells (PF-PC) are the first 
mechanisms driving the output modulation: thanks to the 
Climbing Fibers (CFs) teaching signal, PF-PC synapses 
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undergo the proper modifications in order to increase or 
decrease inhibition on Deep Cerebellar Nuclei (DCNs) 
having them to fire in a specific time window. However, 
multiple other plasticity sites coexist in the cerebellum. In 
particular, plasticities at nuclear sites, like Mossy Fibers-
Deep Cerebellar Nuclei (MF-DCN) or Purkinje Cells-Deep 
Cerebellar Nuclei (PC-DCN) synapses, are responsible for a 
slow consolidation and refinement process, occurring 
through interaction and memory transfer from cerebellar 
cortex to the nuclei [5], [6]. 

One of the typical protocols involving the learning 
capability of the cerebellum is the Vestibulo-Ocular Reflex 
(VOR). During the VOR, the subject, animal or human, 
learns to move his eyes in order to compensate head rotations 
and to keep the image of target fixed on the retina. The 
cerebellum, in particular the flocculus, is supposed to tune the 
VOR, as emerged by lesion, pharmacological inactivation 
and genetic disruption studies [7].  

Since the first version of the Marr-Albus Adaptive Filter 
Model [2], [3], computational neuroscientists have been 
developing a large variety of cerebellar models with an 
increasing number of realistic features. Spiking Neural 
Network (SNN) models represent a well-tested way to 
reproduce the cerebellar learning behavior. Very recently, 
Casellato et al. developed and tested a SNN-based cerebellar 
model in different tasks, including the VOR, both in 
simulations and embedded into a robotic controller [8]. This 
model has shown its effectiveness exploiting only the PF-PC 
plasticity. The aim of this work is to improve this model with 
the introduction of two plasticity sites at the nuclear level, in 
particular LTP and LTD at MF-DCN and PC-DCN 
connections. We tested the models in computational 
simulations reproducing the VOR protocol with two 
consecutive sessions, including acquisition and extinction 
phases. We expect to highlight the behavioral differences 
between the SNN model with one plasticity and the model 
with three plasticities. The introduction of nuclear plasticity 
sites, which have a slow timescale, should model 
consolidation mechanisms, detectable mainly in the re-
acquisition phase [9]. 

Finally, we manipulated the three-plasticity model to 
reproduce a pathological condition. Studies of VOR 
adaptation in mice, reporting damaged LTD at PF-PC 
synapses [10], showed that, if LTD at this plasticity site is 
blocked, the result is a severe damage to VOR adaptation, 
which can be ascribed to this alteration of low-level neural 
mechanism. We translated this impairment modifying the 
correspondent parameter in our SNN, expecting to reproduce 
impaired behavior in the VOR task execution. 

 

Healthy and Pathological Cerebellar Spiking Neural Networks in 
Vestibulo-Ocular Reflex 

Alberto Antonietti, Claudia Casellato, Alice Geminiani, Egidio D’Angelo, Alessandra Pedrocchi 



  

 
Figure 1.  Cerebellar Model and Plasticity Sites 

Topology of the SNN models used, with different groups of cells and the 
correspondence input/output variables. Transparent areas indicate the 
three plasticity sites: in red the PF-PC plasticity, in blue the MF-DCN 
plasticity and in green the PC-DCN plasticity. 

II. MATERIALS AND METHODS 

A. Cerebellar Model and Learning Rules 
The SNN used in computational simulations was composed 
of 2160 Leaky Integrate&Fire neurons (Fig. 1). 
• 100 Mossy Fibers (MFs), which encoded the vestibular 

information. Half of the MFs encoded the head angle 
and the other half encoded the head angular velocity. 

•  2000 Granular Cells (GRs), which generated a sparse-
coding representation of the input.  

• 24 Inferior Olive cells (IOs), which encoded the gaze error 
(i.e. the difference between the desired and the actual 
direction of the eyes). Each IO is connected with one 
PC through one CF. 

• 24 Purkinje Cells (PCs), which had inhibitory connections 
to the DCNs. Each PC was randomly connected with 
the 80% of the GRs through PFs. 

• 12 DCNs, which were the output of the cerebellar circuit, 
generating the motor command responsible for the eye 
rotation. Each DCN receives excitatory connections 
from all 100 MFs and 2 inhibitory connections from 2 
PCs. 

Here the learning rules are described: 
1st learning rule: PF-PC 
The first learning rule involved PF-PC connections and 
generated heterosynaptic LTP and LTD. Depending on the 
triggering signal from IOs (carried by CFs), LTD occurred at 
PF-PC connections corresponding to PFs that were active 
before the IO spike arrival. The maximum amount of LTD 
(= -0.5878) was applied to the PFs which were active 
100 ms before the IO spike. This time interval was in 
according to physiological reference values, in order to have 
the effect of plasticity and consequently the motor command 
with the proper anticipated timing, considering both the 
delays in neural and motor circuits. Otherwise, if a PF fired 
without the simultaneous firing of an IO, the corresponding 
synapse underwent a constant LTP (= 0.0073). Details can 
be found in [11]. 
2nd learning rule: MF-DCN 
This plasticity rule strengthened and weakened MF-DCN 
synapses, by heterosynaptic LTP and LTD, triggered by PCs 
spikes. Specifically, if a MF and a PC fired within the same 
narrow time window, LTD was induced to the corresponding 
MF-DCN connections; otherwise, if a MF fired in absence of 
PCs activity, LTP occurred. The amount of LTD depended 
on the time interval between the MF and PC spikes, with a 
maximum (= -6.1491∙10-8) when the activity of MFs and 
PCs was synchronous, otherwise the amount of LTP was 
constant (=1.4763∙10-5). Details can be found in [12]. 
3rd learning rule: PC-DCN  
This learning rule was a standard Spike-Timing Dependent 
Plasticity (STDP) [13]: when one of the two PCs (pre-
synaptic) fired and soon after the corresponding DCN fired 
(within a LTP-time window = 20 ms), the two inhibitory 
synapses from PCs to that DCN were increased (maximum 
LTP change: α3 = 3.3874∙10-5). Otherwise, if the opposite 
chronological order occurred (within a pre-defined LTD-
time window = 60 ms), the synapses underwent LTD 
(maximum LTD change β3 = 1.8931∙10-7). 

The used LTP and LTD constants for the different 
learning rules come from a parameter optimization made by 
a Genetic Algorithm [14]. The one-plasticity model 
embedded only the first learning rule, the three-plasticity 
model embedded all the three learning rules, whereas the 
pathological model embedded three learning rules, with an 
impaired LTD at cortical level, modeled as a decrease of 
LTD1 constant, set to the 30% of the optimal value. 

To test the cerebellar model, we exploited the Event-
Driven simulator based on Look-Up-Tables [15], an open-
source neural simulator which reduces the computational 
load using look-up tables. The simulations were run on a Dell 
Precision T3610, equipped with an Intel® Xeon® Processor 
E5-1620 v2 at 3.70 GHz and 32 GB of RAM. 

B. Protocol 
The VOR protocol consisted of two sessions of 80 trials of 
acquisition and 20 trials of extinction. During the acquisition 
trials, the head performed a 2 seconds semi-sinusoidal 
rotation with an amplitude of 26° at a frequency of 0.25 Hz 
and the eyes aimed at fixing a desired target. In order to 
maintain the gaze direction focused on the target, the 
cerebellum had to generate an eye counter-rotation with the 
same shape of the head but with the opposite sign. During 
the extinction trials, the head performed the same rotation, 
but the target was moving in the same direction of the head 
rotation. The cerebellum had to cancel the previously 
acquired behavior, since the eye counter-rotation was no 
more necessary to maintain the gaze on the target. 

C. Encoding and Decoding Strategies 
To communicate with the SNN, it was mandatory to define 
the encoding strategies, to transform input analog signals 
into cellular action potentials. The vestibular information 
(i.e. head position and velocity) was encoded using Radial 



  

 
Figure 2.  RMS Error comparison  

RMS Gaze error (with sign) along trials in simulations with the one-
plasticity model (in black), the three-plasticity model (in red) and the 
pathological model (in blue). 

 

 
Figure 3.  Velocity gain 

Box plot of distribution of Velocity gain in the 80 trials of Acquisition1 
and Acquisition2 in the three conditions: one-plasticity model (in black), 
the three-plasticity model (in red) and the pathological model (in blue). 
Asterisks indicate significant differences between groups (p<0.01). Blue 
boxes are significantly different from all the other healthy boxes, but no 
significant difference come out between pathological gain in 
Acquisition1 and Acquisition2. 

 

Basis Functions to generate the MFs activity patterns, while 
the gaze error was encoded using a Poisson process that 
regulated the IOs activity [11]. The higher was the error, the 
higher was the IOs frequency, up to a maximum firing rate 
of 10 Hz [16]. We decoded the spiking activity of DCNs as 
an analog variable by a rate-based approach. We filtered the 
output variable with a 100 samples moving average filter, 
which simulated delay and smoothing in the motor 
peripheral circuit. The eye position was proportional to the 
cerebellar output torque (1°/mNm). 

D. Data Analysis 
For each of the three models, we computed: the Root Mean 
Square (RMS) gaze error for each trial, with the same sign of 
the median error within the trial; the VOR gain during the 
two acquisition phases, defined as the ratio between the 
amplitude of head and eye angular velocities; the number of 
spikes of PCs and DCNs within time-bins of 10 ms along the 
trial duration and along the different trials. We applied non 
parametric Kruskall-Wallis tests and post-hoc multiple 
comparison with Bonferroni correction to analyze the VOR 
gain in the two acquisition phases and in the three conditions; 
we set the significance level p to 0.01. 

III. RESULTS 
As a first result, the three different cerebellar models were 
able to learn to compensate the head rotation with a counter-
rotation of the eyes during the acquisition phases and to 
cancel the previously acquired behavior during the 
extinction phases. However, the capability of the model to 
express learning depended on its learning rules parameters. 
In fact the RMS gaze error with sign (Fig. 2) started from the 
same value (-18.38°) for all the three models, at the 
beginning of acquisition, but it evolved with different trends. 
The two healthy models were able, after a dozen of trials, to 
generate a cerebellar output that led to a fast decrease of the 
magnitude of the gaze error, towards lower values. The 
pathological model showed a much slower trend in error 
compensation, since it had a significant impairment of the 
LTD constant of the PF-PC plasticity, which is supposed to 
drive a fast tuning of the VOR. During the extinction phase, 
the error changed its sign, due to the so-called after-effect, 
but all the models were able to rapidly extinguish the 

unnecessary eyes rotation. During the second acquisition 
phase, it can be noticed that the three-plasticity model 
showed a faster and more effective response with respect to 
the one-plasticity model, which behaved as in the first 
acquisition phase. Indeed, the magnitude of the gaze error 
decreased to lower values with the distributed plasticity than 
with the cortical plasticity only. In addition, the pathological 
model, even if its error magnitude remained higher than the 
healthy models, showed a faster and stronger response in 
Acquisition2 with respect to Acquisition1. This behavior was 
reflected by the velocity gain during the two acquisition 
phases (Fig. 3). The ideal gain is equal to one, meaning that 
the eye velocities have the same amplitude of the head 
velocity. The healthy models showed high gain values, in 
both sessions, whereas the pathological model was not able 
to generate a sufficient output, although improving during 
the second acquisition. The effect of multiple plasticity sites 
is clear from the analysis of neural activity (Fig. 4). In 
particular, in the one-plasticity model, there was no 
difference in PCs behavior between Acquisition1 (trials 1-
80) and Acquisition2 (trials 101-180): learning was driven by 
PF-PC plasticity, which caused the PCs activity decrease in 
response to gaze error signal, thus allowing the 
corresponding DCNs to fire. The three-plasticity model 
acted in a different way thanks to the balance among 
multiple plasticity mechanisms: during Acquisition1 both 
PCs and DCNs activity was similar to the one-plasticity 
behavior, but during Acquisition2 the role of nuclear 
plasticity became evident. Learning was driven not only by 
PF-PC, but also by MF-DCN and PC-DCN plasticities. PCs 
activity was higher during Acquisition2 with respect to 
Acquisition1, since the output modulation was also the result 
of changes in the other nuclear synapses. The poor 
performance of the pathological model in Acquisition1 was 
due to a slower weakening of PCs, which continued to 
strongly inhibit DCNs. The behavioral improvement in 
Acquisition2 was clearly due to the nuclear plasticity 
mechanisms that strengthened the excitation from MFs to 
DCNs and decreased the inhibitory influx of PCs to DCNs, 

* 

* 



  

 
Figure 4.  Spiking Activity of PCs and DCNs in single plasticity, 

distributed plasticity and pathological models 

PCs and DCNs spike distribution along trial time and along different 
trials. Each pixel represents one time-bin of 10ms, within it is computed 
the number of spikes of the correspondent group (first row PCs, second 
row DCNs). Each column represents a different model. 

 leading to an increased activity of DCNs, even if still 
compromised.  
 

IV. CONCLUSION 
The obtained results demonstrated that the three different 
models showed learning capabilities to generate and 
extinguish the VOR. The differences in the output behavior 
were due to the different model parameters and reflected 
neurophysiological properties of cerebellar learning. The 
cortical plasticity was responsible for a fast acquisition, 
impaired in the pathological model, whereas the nuclear 
plasticities were responsible for slow adaptation and they 
modulated the DCNs activity. Nuclear plasticities increased 
the efficacy of cerebellar correction, allowing a memory 
transfer from the cortical to the nuclear layer. In conclusion, 
the three-plasticity model turned out to be the most effective 
and realistic and the pathological model demonstrated the 
same misbehavior of impaired cerebellum found in 
neurophysiological studies.  

List of abbreviations 
CFs Climbing Fibers 
DCNs Deep Cerebellar Nuclei 
IOs Inferior Olive cells 
LTD Long-Term Depression  
LTP Long-Term Potentiation 
MFs Mossy Fibers 
PCs Purkinje Cells 
PFs Parallel Fibers 
RMS Root Mean Square 
VOR Vestibulo-Ocular Reflex  
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