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Abstract— This paper describes the application of the LAM-
STAR (LArge Memory STorage and Retrieval) neural network
for prediction of onset of tremor in Parkinson’s disease (PD)
patients to allow for on-off adaptive control of Deep Brain
Stimulation (DBS). Currently, the therapeutic treatment of PD
by DBS is an open-loop system where continuous stimulation is
applied to a target area in the brain. This work demonstrates
a fully automated closed-loop DBS system so that stimulation
can be applied on-demand only when needed to treat PD symp-
toms. The proposed LAMSTAR network uses spectral, entropy
and recurrence rate parameters for prediction of the advent
of tremor after the DBS stimulation is switched off. These
parameters are extracted from non-invasively collected surface
electromyography and accelerometry signals. The LAMSTAR
network has useful characteristics, such as fast retrieval of
patterns and ability to handle large amount of data of different
types, which make it attractive for medical applications. Out
of 21 trials blue from one subject, the average ratio of delay
in prediction of tremor to the actual delay in observed tremor
from the time stimulation was switched off achieved by the
proposed LAMSTAR network is 0.77. Moreover, sensitivity of
100% and overall performance better than previously proposed
Back Propagation neural networks is obtained.

Index Terms— Parkinson’s Disease, Tremor Onset Prediction,
Closed-loop Deep Brain Stimulation, LAMSTAR Neural Net-
work, Accelerometer, Surface EMG.

I. INTRODUCTION

In the United States, more than one million people are
afflicted with Parkinson’s disease (PD), one of the most
common neurodegenerative motor disorders. PD is due to the
degeneration of dopamine-producing cells in the brain and
is characterized by symptoms such as tremor, rigidity and
bradykinesia. These debilitating symptoms gradually worsen
over time, affecting the quality of life adversely. Although no
permanent treatment is available for PD, the symptoms can
be curbed medically or surgically. Levodopa-Carbidopa med-
ication helps control the symptoms in the early stages of PD;
however, as the disease advances, the effectiveness of these
drugs reduces. Surgical procedures, like Thalamotomy and
Deep Brain Stimulation (DBS), then need to be performed.
With Thalamotomy, a target region is lesioned, and thus
it is irreversible. With DBS, electrodes are stereotactically
implanted in the Sub-Thalamic nucleus (STN) or the pars
interna of the Globus Pallidus (GPi) for delivery of High
Frequency stimulation (HFS). An Implantable Pulse Gener-
ator (IPG) is used to manually adjust the parameters of the
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HFS. Stimulation with a fixed set of parameters (amplitude
1-5 V, pulse duration 60-200 microseconds, and frequency
of 120-180 Hz), determined by the clinician by assessment, is
continuously applied to the target brain region. The battery of
IPG usually lasts about 2 to 3 years and needs to be replaced
surgically. DBS is a reversible procedure but may cause
certain side-effects, such as speech slurring and dyskinesia.
Over the past decade, it has become apparent that on-demand
DBS may alleviate to a certain extent such side-effects while
in addition improving IPG battery life and thus reducing the
trauma of repetitive surgery [1], [2].

One of the primary symptoms of PD is tremor, a rhythmic
involuntary oscillation with frequency range of 4-12 Hz,
usually observed in the extremities. Among the PD symp-
toms, tremor is the first to reappear after discontinuation
of DBS stimulation [3]. Tremor can be measured using
non-invasive methods of surface electromyography (sEMG)
and accelerometry (Acc). As reported in [4], in 3 out of
9 PD patients, the stimulation can be switched off for at
least 50% of the time by accurately predicting the onset of
tremor. Prediction of tremor with at least 90% sensitivity
using sEMG and Acc signals was shown in [5], [6]. In [6],
a manual algorithm was designed to predict tremor based
on thresholding of different parameters. Since the thresholds
were selected manually, it would be impossible to apply such
method for each patient. A Back-Propagation neural network
(BPNN) was proposed in [5] for fully automated tremor
prediction; however, due to slow convergence, training the
BPNN may be a slow process. In this work we aim to
overcome the shortcomings of BPNN with a LAMSTAR
Neural Network (LNN) [7].

A LNN has many practical advantages. It imitates the
pattern learning capability of the human brain, can handle
diverse data types for pattern recognition, has features for
forgetting and for correlation between layers [7]. A LNN
consists of multiple Self-Organizing Map (SOM) modules,
each of which comprises of neurons competing based on the
concept of Winner-Take-All (WTA). A feature given to the
network for pattern-recognition is called a “sub-word” and
the collection of features is called a “word”. Each SOM mod-
ule receives a sub-word for which its corresponding winner-
neuron “fires”. Based on the combination of winner neurons,
the LNN network makes a decision. Here, the attributes given
to the LNN for detecting the reappearance of tremor are the
spectral, entropy and recurrence rate parameters calculated
from the sEMG and Acc signals as in [6]. An improved
sensitivity of 100% compared to previous results using
Back Propagation network, as in [5], was achieved for this
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automated LAMSTAR based tremor predictor. LNN has also
been reported to be 10 times faster than BPNN in training, as
well as online operation. The fast retrieval feature for medical
as well as other applications is extensively discussed in [7].

The rest of the paper is organized as follows. In Section II
we discuss the method of data collection, parameter extrac-
tion and the LNN architecture in detail. In Section III we
present the main result of the paper. Section IV concludes
the paper.

II. METHOD

A. Data collection and feature extraction

Data collection was carried out at University of Illinois
at Chicago (UIC) under the UIC-IRB 2008-0971. Recording
of sEMG was performed on a female PD patient, who had
previously undergone FDA-approved Medtronic DBS-system
implantation in 2009, as described in [5], [6]. The patient had
dominant tremor in the right hand which was controlled by
medication and stimulation. On the recording day, the patient
was on usual medication. Non-invasive sEMG electrodes
were placed on the extensor digitorum communis (upper
forearm) and the recording was done by a Delsys system
(Delsys Inc., Boston, MA). The signal was amplified (gain
set to 1000) and filtered (20-450 Hz). Acc was measured
by a Coulbourn type V94-41 solid-state piezoresistive ac-
celerometer placed at the tip of index-finger of the right hand.
The two signals were sampled at 1000 Hz. The patient was
comfortably seated with a supportive surface provided for
the forearm. The patient was asked to perform two tasks: (i)
to hold the right arm in an extended position, called as the
“posture state” and (ii) to reach for the opposite shoulder or
extension/flexion of the wrist, denoted as the “action state”.
Other than these states, the recording was also carried out
for “rest state” where the patient had to completely relax
the right arm and place it on the supportive surface. DBS
stimulation was switched off for some time before each trial
so that stimulation of a fixed duration could then be applied.
The trial was then started with stimulation of 20 to 50 sec
duration, followed by switching the DBS off until the tremor
re-appeared.

Power of the raw extensor sEMG signal was calculated
over 50 ms windows slid over each sample to smooth the
signal, i.e., signal processing over 1-second windows, with a
window shift of 0.25 second, thereby generating four samples
every second. For fairness of comparison, we used as inputs
for the LNN the same parameters calculated in [5], [6], as
namely

• Spectral Analysis: Using 512-point Fourier transform,
the power spectral density of smoothed sEMG was cal-
culated over 1-second windows. Tremor information is
concentrated in the 3-18 Hz frequency band; therefore,
maximum power Pmax and its corresponding frequency
Fmax are calculated over this band. Similarly these
two values were also determined for the Acc signal.
Daubechies Wavelet Transform (DWT) was applied to
the smoothed sEMG signal to decompose it in 10

Fig. 1. The figure shows four of the parameters used in the LNN
training. From top to bottom: sEMG Wavelet Entropy difference,
sEMG Mean power in 8-16 Hz, Acc Maximum power in 3-18 Hz
and sEMG Recurrence Rate calculated over 2 sec windows with an
overlap of 1 sec. The bold blue line shows the end of stimulation,
dotted green line shows start of the voluntary movement (in this
instance, posture state) and the dashed black and the red lines show
predicted and observed tremor, respectively.

frequency bands. Of these, the frequency ranges 8-16
Hz and 16-32 Hz were found to be good parameters for
tremor prediction.

• Entropy Analysis: as a measure of “randomness”.
The wavelet entropy, WtEn, quantifies the unpre-
dictability or disorder in a signal. The sample entropy,
SpEn(U,m, r), represents the conditional probability
that the two sub-sequences of U , matching point-wise
for m points, will also match at the next point within a
tolerance r.

• Recurrence Rate Analysis: Recurrence rate analysis
involves calculation of recurrence rates, measuring the
probability of recurrence of a specific state of the dy-
namical system reconstructed using a method of delayed
vector construction.

Fig. 1 shows a representative plot of four of the parame-
ters. In the figure, parameters show a trend before the tremor
is observed, marked by the red vertical line. This trend is
however not always observed in all trials.

B. LNN Architecture

LNN Inputs: The parameters described in Section II-A
were further processed to obtain nine input features, which
served as the subwords given to the LNN as shown in
Fig. 2. These features were calculated over 8 samples or
2 sec windows. Windows overlapped over 1 sec; therefore,
a set of 9 features was obtained every second. For entropy
parameters, maximum value of sample entropy over each
window and the decrease in sample and wavelet entropies
compared to the previous window, were calculated. Mean
values of power in 8-16 Hz and 16-32 Hz and the maximum
value of power in 16-32 Hz over the 2 sec window were
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determined for sEMG. The rest of the spectral features,
namely, Fmax in the 2 sec window with maximum power
and its corresponding Pmax computed for Acc signal, were
taken as two of the input features. Lastly, the maximum
value of recurrence rate in the window was the ninth attribute
considered for prediction of tremor.

Architecture: Fig. 2 shows the set-up of the LNN.
The network is designed to have nine SOM modules with
11 neurons each and one output layer with two neurons.
Each input word to the LNN consists of the nine features
previously described. Each subword is given to its respective
SOM layer. Based on the range of this input feature, a winner
neuron of the SOM module fires. As shown in Fig. 2, the
winner neurons from each SOM module are connected to
the output neurons via link weights. The two neurons in
the output layer, referred to as T and NT, correspond to
the binary decision of “tremor predicted” or “tremor NOT
predicted”, respectively. This decision is made by comparing
the sum of link weights from the nine winner neurons to the
output neurons. If the sum of the link weights to the NT
neuron is greater than or equal to the sum of link weights to
the T neuron a decision of “tremor NOT predicted” is made,
otherwise the decision is “tremor predicted”.

We used approximately two-third of the 21 available trials
for the considered PD patient for training and the remaining
for testing. Training and testing are described next.

Training: During training, a word is input to the LNN
that corresponds to the features of the sEMG and Acc signals
at a given time point after DBS stimulation is switched
off. Link weights from all the neurons to the two output
neurons are initialized to zero at the beginning of training.
After the winner neurons of the SOM modules fire and
the decision is made based on the sum of link weights, a
reward / punishment policy is applied. Different policies are
applied for the Posture/Rest and Action states. If no tremor
is predicted up to 5 sec before the tremor was actually
observed, the link weights from the winner neurons to the
NT output neuron are rewarded by ∆L, and to the T output
neuron punished by ∆M . For early detection, the punishment
(4∆M for Action mode and 6∆M for Posture/Rest modes) is
given to the link weight from the winner neurons to the NT
output neuron; this is done so as to reduce the false alarm
rate. In the last 5 sec window before the tremor appeared, if
the tremor is predicted then the link weights from the winner
neurons to T output neuron are rewarded by ∆L and those
to NT neuron are punished by ∆M . Separate LNN networks
were trained for the modes of Actions and Posture/Rest states
because of the very different ranges the various features have
in these states. The LNN was run for 200 iterations to ensure
convergence.

Testing: The LNN performance was assessed based on
sensitivity, accuracy and R-ratio, as in [5]. Sensitivity is
defined as the percentage of true positives out of the sum
of all true positives and false negatives. Accuracy is the
percentage of correct decisions, i.e., true positives and true
negatives out of all decisions. In this work, a true positive
is defined if the tremor prediction was made at least 50%

TABLE I
PERFORMANCE RESULTS FOR LAMSTAR NETWORK.

Trials Total Action Posture Rest
R-ratio 0.77 0.79 0.72 0.88
Accuracy 77% 60% 83.3% 100%
Sensitivity 100% 100% 100% 100%

time through the tremor-free interval (as too early prediction
defeats the purpose of on-demand closed-loop DBS). To
evaluate the performance of the network, we also calculate
R-ratio, which is the ratio of delay in tremor prediction from
the time DBS stimulation was switched off to the delay in
the tremor observation. This measure signifies how close to
the actual observation is the tremor predicted by the LNN.

III. RESULTS AND DISCUSSION

Nine parameters processed from the sEMG and Acc data
were given to two separate LNNs based on the state of the
limb being tested. The LNNs had the same basic structure
of 9 SOM layers with 11 neurons each, as previously
discussed. We trained and tested the LNNs for 21 trials
of Action, Posture and Rest modes. Classification between
the Action and Posture or Rest states has been previously
shown in [8]. A state-classifier can be similarly implemented
to recognize the mode, followed by selection of the cor-
responding LAMSTAR network. 100% sensitivity i.e. there
were no ‘misses’, total accuracy of 77% and R-ratio of 0.77
were achieved for files of all modes combined. Detailed
performance measures are given in Table I. The R-ratio
value with LNN is greater than 0.7 for all modes. Accuracy
with LNN is lowest in Action state, which is due to high
false positive rate from early detections (which may be
because voluntary movements are mistakenly classified as
beginning of tremor). This aspect needs improvement and is
currently under investigation. Since the current experimental
set-up allows recording for approximately two hours without
causing muscle fatigue, the number of trials for each state
is limited. The accuracy of the LNN is expected to improve
if the number of trials used for training the LNN for Action
state is increased. Sensitivity with LNN is 100% for all
modes, which is the most important performance factor since
a ‘miss’ is not acceptable for tremor prediction applications.

IV. CONCLUSIONS

We presented here the initial progress towards developing
a fully automated tremor predictor using a LAMSTAR neural
network in order to overcome some of the limitations we
encountered in our past work with Back Propagation net-
work. Further improvement on our proposed design may be
achieved by identifying other features characterizing the on-
set of tremor. Due to complete transparency of a LAMSTAR
neural network, clusters of winner neurons during absence
of tremor can be compared with the clusters at the advent
of tremor. By recognizing this set of features, prediction
can be improved by eliminating redundant SOM layers or
features that may be obscuring the results. Clustering of
the set of predicting neurons can be reinforced by adding
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Fig. 2. Architecture of LNN: The figure shows the LAMSTAR neural network architecture. Nine input features or “subwords” are given
to their respective SOM layers, which consist of 11 neurons each. Each of the neurons are connected to the output layer via Link weights.
The decision of NT “No Tremor” neuron firing or T “Tremor” neuron firing is made by comparing the sum of link weights from the
winner neurons to the output neurons,

∑
LwNT and

∑
LwT respectively. Output neuron corresponding to greater of the sums of link

weights wins. Here, one instance of winner neurons of the nine SOM layers is shown with the shaded boxes representing the winner
neurons at a time instant.

correlation links between related features. In future, we
intend to compare the performance of the LAMSTAR neural
network with other machine learning techniques such as
Decision Tree Classifier and Support Vector Machine.
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