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Abstract

Gleason-grading of prostate cancer pathology specimens reveal the malignancy of the cancer 

tissues, thus provides critical guidance for prostate cancer diagnoses and treatment. Computer-

aided automatic grading methods have been providing efficient and result-consistent alternative to 

traditional manually slide reading approach, through statistical and structural feature analysis of 

the digitized pathology slides. In this paper, we propose a novel automatic Gleason grading 

algorithm through local structure model learning and classification. We use attributed graph to 

represent the tissue glandular structures in histopathology images; representative sub-graphs 

features were learned as bags-of-words features from labeled samples of each grades. Then 

structural similarity between sub-graphs in the unlabeled images and the representative sub-graphs 

were obtained using the learned codebook. Gleason grade was given based on an overall similarity 

score. We validated the proposed algorithm on 300 prostate histopathology images from the 

TCGA dataset, and the algorithm achieved average grading accuracy of 91.25%, 76.36% and 

64.75% on images with Gleason grade 3, 4 and 5 respectively.

 I. Introduction

Prostate cancer has become the 2nd most common cancer in American men, and also the 

2nd leading cause of cancer death in American men, according to the latest statistics from 

the American Cancer Society reported in March, 2014 [1]. Successful treatment for prostate 

cancer largely depends on early diagnosis [20], which is determined mainly via the 

pathology analysis of biopsy samples [2].

As there are major biological deformation to the tissue cell structure as prostate cancer 

originates and develops, a grading system based on tissue cells deformation, the Gleason 

grading system [3], was developed and widely adopted to measure the malignance of caner 

tissue. In the Gleason system, a grade of 1 to 5 is given to the sampled prostate tissue based 

on the tissue architecture. Grade 1 corresponds to well-differentiated structure with the 

highest degree of resemblance to normal tissues, while grade 5 corresponds to poorly 
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differentiated tissue with the highest degree of resemblance to cancer tissues. In pathology 

practice, only tissue with a Grade of 3 and higher are considered carcinoma, so in this work 

we only focus on the inter-class classification among Grade 3, 4, and 5. Figure 1 illustrated 

the representative tissue samples of Gleason score 3, 4 and 5.

With the widely used of digital pathology systems and whole-slide imaging (WSI) 

technology in prostate cancer research field, lots of work has been dedicated in developing 

automatic analysis and grading algorithms [4]–[10] in the past few years. Early auto-grading 

algorithm [4], [5] used statistical features to capture the structure differences between tissue 

images of different grades. Huang et.al [4] used fractal-dimension (FR), a texture feature to 

capture the local-repentance appeared in tissue patches. Doyle et al. [5] combined first-order 

statistic feature with texture features (co-occurrence feature [11] and Gabor feature [12]), 

and generated a concatenated feature of 927 dimensions. Although showed good 

classification accuracies, it requires a higher feature dimension to achieve high classification 

accuracy, as well as effective feature selection and dimension reduction methods. In work 

[5], Doyle et al. used AdaBoost [13] classifier to select the most effective features from the 

927 dimension feature.

Later research [6]–[10] tried to directly extract the component-level information from the 

tissue images by modeling and quantifying the organization and distribution of the 

histopathological components within tissues. In work [6]–[9], graph-based feature were 

proposed to model and quantify global structural organization. Recently, Ozdemir et al. [10] 

introduced to use attributed sub-graph to model the local structural features. However in the 

work, the classifications were conducted in a semi-automatic way through comparing to pre-

selected sub-graphs from groud-truth query images.

Inspired by the work in [10] in this paper we propose a novel automatic Gleason grading 

algorithm based on local structural modeling. We use attributed graph to represent the tissue 

glandular structures in histopathology images, and introduce a distribution histogram to 

model the labeled subgraph and quantify the similarity between local structures. The rest of 

the paper is organized as follows, in Section II we describe our local structure feature 

modeling based automatic-grading algorithm; the evaluation results were detailed in Section 

III; with concluding remarks in Section IV.

 II. Methodology

 A. Overview

Figure 2 gives an overview of the proposed automatic grading method. The method is 

composed of 2 phases: training phase and auto-grading phase. (1) During the training phase, 

sub-graphs were built based on the segmented tissue components (nuclei and lumen in this 

study), and the local structure features were extracted from the sub-graphs. A codebook was 

learned from the local structure feature set using bag-of-words [15] method. Then based on 

the learned codebook, each set of local structure features can be represented using one word-

frequency feature. A multi-class SVM classifier was then trained from the word-frequency 

features. (2) During the auto-grading phase, local structure features were extracted similarly 

from the sub-graphs built on the unlabeled input image, and the class label of the unlabeled 
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image were assigned by the multi-class SVM classifier using the word-frequency features 

mapped from the codebook. Each step will be detailed in the following sections.

 B. Tissue Component Segmentation

In order to capture the centroids of the lumen regions, we used a 2-level segmentation 

method. In the 1st level, tissue image were segmented into 4 groups: nuclei, lumen, stroma 
and cytoplasm using a trained Bayes classifier. The classifier used the RGB value as the 

feature and trained from a labeled sample set of 1600 points, with 400 points from each 

category. Then in level-2, we adopted the method from [14] and used Fast Radial Symmetry 

Transform (FRST) feature as marker to perform a marker-controlled watershed 

segmentation. The centroids were refined using additional criterias. Figure 3(c) and 3(b) 

showed the segmented nuclei and lumen region of a sample image (Figure 3(a)), and the 

nuclei and lumen centroids from level-2 segmentation were showed in Figure 3(d).

 C. Local Structure Modeling

As illustrated in Figure 1, the spatial distribution and organization of nuclei and lumen in the 

prostate tissue characterize the malignance of the tissue sample. In this method, we only 

focus on building a tissue graph to represent the spatial distribution of nuclei and lumen in 

the tissue sample.

 1) Local Structure Grouping—Normal prostate histopathology tissue consists of 

gland units surrounded by fibromuscular tissue (named stroma), which mechanically 

supports the gland units. Each gland unit is composed of rows of epithelial cells situated 

around a duct(named lumen). To better capture the glandular structure in the tissue, we 

group the tissue component into lumen-centered local groups. Let NucC and LumC 

represent the centroid sets of the segmented nuclei and lumen region in the image, with Nnuc 

and Nlum equal the number of nuclei and lumen regions segmented. And define LumBiL as 

the iLth lumen boundary, in which iL ∈ [1, 2, ..., Nlum]. To group the nuclei with its nearest 

lumen area, we define the grouping criteria as in Equation 1 and Equation 2.

(1)

(2)

In which,  is the grouping label of the ith nuclei,  represent the distance between 

the ith nuclei and the jth lumen boundary point. Figure 4 showed the grouping results of 

nuclei and lumen elements on sample images of grade 3 and grade 4.

 2) Lumen-nuclei Co-location (LNCL) Feature—In this work, we design a new 

feature lumen-nuclei co-location (LNCL) to quantize the organization and distribution of 

nuclei and lumen in a local group. LNCL feature is built to model the statistic distribution of 

Wang et al. Page 3

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distance and tilting angle between each pair of component elements in a local glandular 

group. In our study, we use 2 groups of component elements: nuclei-lumen (NL) and nuclei-

nuclei (NN). Figure 5 illustrate the NL and NN pairs on a pseudo gland unit. LNCL feature 

is defined as:

(3)

In which,  represent the histogram of distance and tilting 

angle between the nuclei-lumen (nuclei-nuclei) pairs within a local glandular group.

 3) Relaxed-LNCL (rLNCL) Feature—Due to the histopathology structure, lumen 

regions were not present in some tissue structures. Using the grouping criteria, in these 

cases, the nuclei will be grouped with the nearest lumen element. Although not grouped as 

exist glandular unit, the histograms (in Equation 3) still captures the organization and 

distribution of between the nuclei, we refer to them as relaxed-LNCL features. Figure 6 

showed example LNCL (rLNCL) feature from sample structure group from tissue of 

different Gleason grade.

 D. Grade Classification through Bags of Words

To quantify the element-wise similarity between structure groups from different images, we 

adopt the bag-of-words [15] paradigm for LNCL based grade classification. Here we use K-

means [16] clustering algorithm and hard-assign to build a codebook from the LNCL 

(rLNCL) feature set calculated with all labeled (training) images. Then a 3-class SVM 

classifier (one-vs-one) was trained using the mapped word-frequency feature. With the 

learned classifier, during the auto-grading phase, the output of the 3-class SVM will be the 

auto-grading label for the unlabeled input image.

 III. Experimental Evaluation

 A. Dataset

We tested the proposed auto-grading algorithm on a dataset of 300 H&E stained prostate 

histopathology images. The images were selected as region-of-interest (ROI)s of whole-slide 

images from National Cancer Institute (NCI) [18] the Cancer Genome Atlas (TCGA) [19] 

database. The ROIs were sampled at 40X magnification, and pixel resolution of 2048×2048 

from the whole-slide images. The images are chosen evenly with ground-truth labeled Grade 

3, 4 and 5.

 B. Results

 1) Classification Accuracy—We evaluated the grading algorithm using 10-folds cross 

validation, and the classification accuracy on images of groud-truth Gleason scores 3, 4 and 

5 are showed in Table I. Here we use codebook size K = 300.

We further evaluate the proposed local-structure based LNCL (rLNCL) feature by 

comparing it with our statistic feature based former work [17]. Comparison results in Figure 
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7 showed that structure feature outperformed statistic feature in testing images with more 

structural characteristic (Grade 3).

 2) Parameter Analysis—To test the bag-of-words paradigm under different 

parameters, we evaluated the performance of the classification using different codebook 

sizes, K ∈ {200, 250, 300, 350, 400}. The classification accuracy of the proposed algorithm 

under different codebook sizes were showed below in Figure 8.

 IV. Conclusion

In this paper, we proposed a novel automatic Gleason grading algorithm through supervised 

tissue structure learning and supervised classification. Representative sub-graphs features 

were modeled by a novel lumen-nuclei co-location (LNCL) feature and learned as bags-of-
words features from labeled samples of each grades. Structural similarity between sub-

graphs in the unlabeled images and the representative sub-graphs were obtained using the 

learned codebook and 3-class SVM classifier. Validation on sampled prostate histopathology 

images showed average grading accuracy of 91.25%, 76.36% and 64.75% respectively on 

Grade 3, 4 and 5 samples respectively.
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Fig. 1. 
Example histopathology images of Gleason grade 3(a), grade 4(b) and grade 5(c).
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Fig. 2. 
Overview of the proposed algorithm.
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Fig. 3. 
Lumen and nuclei segmentation. (a) Original image, (b)segmented nuclei region, (c) 

segmented lumen regions, (d) detected lumen and nuclei centroids.
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Fig. 4. 
Nuclei-lumen local grouping result of grade 3(a) and grade 4(b) images.
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Fig. 5. 
Illustration of LNCL feature on a pseudo gland.
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Fig. 6. 
LNCL (rLNCL) feature from sample structure group of Grade 3(a), 4(b) and 5(c) tissue 

region.
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Fig. 7. 
Classification accuracy comparison between the proposed algorithm and classification 

algorithm in [17].
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Fig. 8. 
Classification accuracy of the proposed algorithm under different codebook sizes.
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TABLE I

Classification Accuracy on Dataset with Different Ground-truth Gleason Score %

Test Dataset High Low Average

Grade 3 carcinoma 93.75 87.50 91.25

Grade 4 carcinoma 86.36 63.64 76.36

Grade 5 carcinoma 72.72 60.81 64.75
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