Loading [MathJax]/extensions/TeX/mhchem.js
Identification of dynamical biological systems based on random effects models | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Tuesday, 14 January, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Identification of dynamical biological systems based on random effects models

Publisher: IEEE

Abstract:

System identification is a data-driven modeling approach more and more used in biology and biomedicine. In this application context, each assay is always repeated to esti...View more

Abstract:

System identification is a data-driven modeling approach more and more used in biology and biomedicine. In this application context, each assay is always repeated to estimate the response variability. The inference of the modeling conclusions to the whole population requires to account for the inter-individual variability within the modeling procedure. One solution consists in using random effects models but up to now no similar approach exists in the field of dynamical system identification. In this article, we propose a new solution based on an ARX (Auto Regressive model with eXternal inputs) structure using the EM (Expectation-Maximisation) algorithm for the estimation of the model parameters. Simulations show the relevance of this solution compared with a classical procedure of system identification repeated for each subject.
Date of Conference: 25-29 August 2015
Date Added to IEEE Xplore: 05 November 2015
ISBN Information:

ISSN Information:

PubMed ID: 26736981
Publisher: IEEE
Conference Location: Milan, Italy

References

References is not available for this document.