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Abstract— Microbial species thrive within human hosts by 

establishing complex associations between themselves and the 

host. Even though species diversity can be measured (alpha- 

and beta-diversity), a methodology to estimate the impact of 

microorganisms in human pathways is still lacking. In this 

work we propose a computational approach to estimate which 

human pathways are targeted the most by microorganisms, 

while also identifying which microorganisms are prominent in 

this targeting. Our results were consistent with literature 

evidence, and thus we propose this methodology as a new 

prospective approach to be used for screening potentially 

impacted pathways. 

 

I. INTRODUCTION 

The human organism is an ecosystem harboring about ten 
times more microbial cells than its own somatic and germ 
cells. This was the motto behind The Human Microbiome 
Project (HMP), which was created in attempt to establish new 
parameters for health and disease [1]. The development and 
introduction of next generation sequencing techniques 
propelled the identification of the human microbiome (the 
sum of our microbial symbionts), which in turn allowed the 
characterization of microbial species by their gene products. 

Microorganisms must establish protein-protein 
interactions (PPIs) with the host to be able to thrive [2]. Since 
each PPI complex has a defined output in physiological 
context, one can hypothesize that if a human protein is 
interacting with a microbial protein, the former will not be 
available to establish a complex with its physiological 
interacting counterpart [reviewed in 3]. This could negatively 
impact pathways of the host (e.g., [4]), but positive impact  is 
also a possibility (e.g., [5]).  

Even though the diversity of microbial communities, 
within and across samples (alpha-diversity and beta diversity, 
respectively) for various body sites, has already been 
described [6], we did not find any approach to measure the 
potential positive or negative impact of microorganisms in 
human pathways.  
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In this work we propose an algorithm to estimate the 
impact of microorganisms in human pathways. We tested our 
approach in ten different microbiomes, obtaining results 
consistent with the literature. 

II. METHODS 

A. Data Collection 

Human gene data were obtained from the Human Protein 
Atlas [7], and filtered according to its expression level – only 
genes considered as being highly expressed in a certain body 
site were taken into account. Microbial gene data were 
collected from HMP, including abundance scores for each 
sample.  

Sample extraction site data were also collected to 
establish the baseline microbiomes for each body site. The 
UniProt accession IDs of each possible gene product from the 
obtained gene pool. Each microbial and human protein 
acquired this way was sorted into the body site where their 
respective precursor genes were originally found. A summary 
of the final ten microbiomes is shown in Table 1. 

After successful identification of the protein pool possibly 
present in each microbiome, we predicted the protein 
interactions most likely to occur in those sites (i.e., the 
interactome for each microbiome). This task was fulfilled by 
using an adaptation of a previously described methodology 
[8] by the same authors. 

Human pathway data was retrieved from the Reactome 
database [9]. This includes the name of the pathway and of 
all the proteins present in the respective pathway. 

 

TABLE I.  NUMBER OF PROTEINS IN EACH BODY SITE 

 Protein Origin 

Body site Human Microbial 

Appendix 16,952 174,293 

Cervix 12,568 159,056 

Colon 26,505 174,293 

Esophagus 12,962 158,126 

Nasopharynx 18,272 159,799 

Oral mucosa 9,003 180,033 

Rectum 22,916 174,293 

Skin 10,858 176,186 

Small Intestine 24,082 174,293 

Vagina 8,372 96,561 
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All data from the Human Protein Atlas, the HMP, and the 
Reactome database used in this work were downloaded in 
June 2014. 

B. PPI Prediction Within Microbiomes 

The PPI prediction approach used in this work was based 
in [8]. This methodology focused on five feature clusters 
constructed from: literature; primary protein sequence 
information; orthologous profiles; biological process 
similarity, and; enriched conserved domain pairs. These 
clusters were optimized for the prediction of PPIs in proteins 
with a high degree of annotation. The most general and 
descriptive feature cluster was based on protein sequence 
data, and since the sequences of all proteins in our datasets 
are known, this means our feature cluster has 100% data 
coverage. For this reason, we opted to optimize the original 
algorithm for sequence -based PPI predictions. 

The final classifier was tested using 5-fold cross 
validation against a dataset of high-quality, experimentally 
identified, and manually curated protein interactions 
(approximately 20,000 PPIs). These data were obtained from 
the BioGRID database [10] in March, 2014. PPI predictions 
in this work were obtained with an average accuracy of 0.9. 

B. Data clustering 

The final pre-processing step involved clustering all 
organisms present by their respective phyla, so we can 
understand which phyla impacts each human pathway the 
most. We opted for a phylum-level analysis since we are 
analyzing ten different microbiomes. Indeed, this level of 
taxonomic resolution has been used in a recent related work 
[6]. Since avian, bovine, and porcine proteins were identified 
in our protein pool, we removed all proteins under the 
Animalia kingdom, as we believe many of these proteins 
could be considered sample contaminants present by the time 
of sample extraction. 

Even though all the proteins present in our data set could 
be clustered in 24 different phyla, we chose to only analyze 
the impact of Actinobacteria, Bacteroidetes, Cyanobacteria, 
Firmicutes, Fusobacteria, Proteobacteria, Spirochaetes, and 
Tenericutes, as in these phyla are included the most notable 
human bacterial pathogens. 

In addition, from a list of 201 human pathways that were 
targeted for interaction by at least one microbial protein, we 
chose to only analyze the ten pathways that were most 
targeted for PPIs by microbial proteins. The list of human 
pathways analyzed in this work is shown in Table 2.  

All the proteins that integrated any of the 201 pathways 
were cross-linked with the human proteins present in our 
dataset, for each body site. This resulted in a list that linked 
each event to the human proteins that were expressed in each 
region, together with the total number of proteins that 
participated in each event. In addition, sub-pathways were 
grouped by their respective parent pathways. As such, our 
analysis will fall on the apoptosis, cell cycle, DNA repair, 
gene expression, and metabolism pathways. 

C. Calculating the Microbial Impact in Human Pathways 

The main hypothesis behind the development of our 
algorithm was simple: if a microbial protein interacts with a 
human protein that is part of a pathway, one can expect a 
decrease in pathway activity downstream of the targeted 
protein, since the targeted protein is transiently occupied. Of 
course, this will depend on the abundance of both targeting 
(microbial) and target (human) proteins. With this in mind, 
we developed the following equation: 

 𝜃𝑒 =
1

𝐻𝑒
∑

1

𝑚𝑖
∑ 𝜔𝑗
𝑚𝑖
𝑗=1

ℎ𝑒
𝑖=1  

In brief, for the analysis of the level of impact (θ) induced 
to each event (e), we averaged the sum of the abundance (ωj) 
of each microbial protein (j) by the total number of microbial 
proteins (mi), which interact positively with each human 
protein (i). The value of mi represents the number of the most 
abundant microbial proteins which interact with each human 
protein of the total number of affected human proteins (he). 
This value is then weighted by the total number of human 
proteins (He) that participated in the event. 

TABLE II.  PATHWAYS TARGETED THE MOST BY MICROBIAL PROTEINS 

Pathway Name 
Parent 

Pathway 
Reactome ID 

Translesion synthesis by POLH DNA repair 110320 

Insulin effects increased synthesis 

of D-Xylulose-5-P 
Metabolism 163754 

PAOs oxidise polyamines to 
amines  

Metabolism 141334 

Resolution of D-loop structures 

through Holliday junction 
intermediates 

DNA repair 75228 

Resolution of D-loop structures DNA repair 75149 

TET 1, 2, 3 and TDG demethylate 
DNA 

Gene express. 5221030 

Processing of DNA double-strand 

break ends 
DNA repair 83626 

Transport of the SLBP 

independent mature mRNA 
Gene express. 159227 

Progressive synthesis on the C-
strand of the telomere 

Cell cycle 174414 

Activation and oligomerization of 

BAK protein 
Apoptosis 111452 

 

For instance, when the total number of human proteins in 
any pathway p increases, one can expect a low impact θp. 
This can be caused by possible compensatory mechanisms in 
pathway p, where an isoform of the targeted protein plays the 
role of the latter in the pathway, or even due to up-regulation 
of gene expression as part of a feedback mechanism [11, 12]. 
Finally, we proceeded to the quantitative estimation of the 
impact of each phylum in human pathways. 

III. RESULTS AND DISCUSSION 

A.  Impact mapping 

Fig. 1 presents the results of our proposed approach. 
Regions with higher microbial abundance are easily spotted, 
as they have the highest impact values (the appendix, colon, 
oral mucosa, rectum, and small intestine). The other five 
body sites not only present lower impact values, but also 
seem to have dominant phyla.  
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In comparison with the appendix, colon, oral mucosa, 
rectum, and small intestine, these sites seem to possess 
reduced species diversity, as more than one phyla can be 
observed having an impact in the pathways of the former 
sites. 

 

Figure 1.  Representation of microbial impact in the pathways of ten 

different microbiomes. Circle radius represents impact value. (A –Appendix; 
B – Cervix/Uterus; C – Colon; D – Esophagus; E – Nasopharynx; F – Oral 

cavity; G – Rectum; H – Skin; I – Small intestine; J - Vagina). 

Nonetheless, these results depend heavily on the extent of 
the knowledge of microbial genomes (and proteomes). That 
is, fully uncovered microbial proteomes will allow to 
optimize the prediction of protein interactions to a whole new 
level, enhancing all computational approaches based on such 
predictions. 

B. Characterization of impact maps 

We found that the phyla impacting the appendix, colon, 
rectum and small intestine (Fig. 1, Panels A, C, G, and I) the 
most were Bacteroidetes, Firmicutes, and Proteobacteria. In 
addition, when compared with the other six microbiomes, 
these regions suffered the greatest microbial impact. 
Literature evidence shows that these phyla make up for 
almost all of the species in the gut microbiota [13]. Our 
results also show that the main human pathways being 
targeted by microbial proteins are apoptosis, gene expression, 
and metabolism. Indeed, we found evidence that the gut 
microbiota has been implicated in metabolic disturbances, 
such as obesity, outflow during energy production, and even 

the regulation of host genes that control metabolic processes 
[14, 15]. 

Vaginal and cervical/uterine (Fig. 1, Panels B and J) 
regions also show a very similar pattern. Both regions were 
dominated by Firmicutes, consistently with literature 
evidence [16]. In this microbiome, we identified cell cycle, 
metabolism and DNA repair as the pathways being impacted 
the most. Such results also have literature support, as some 
Lactobacilli species were shown to decelerate cell cycle 
progression in the cervix, while a single Lactobacillus species 
was found to transiently accelerate cellular division in the 
human host [17]. 

The esophagus (Fig. 1, Panel D) possessed great 
microbial diversity, being mostly impacted by species under 
the Proteobacteria, Firmicutes, and Bacteroidetes phyla. The 
most affected pathways in the esophagus were metabolism 
and DNA repair, which according to existing literature, can 
occur once bacterial species activate their damage repair 
mechanisms. This will in turn induce DNA damage in the 
host, thus activating its DNA repair mechanisms [18, 19].  

The oral cavity and nasopharynx (Fig. 1, Panels E and F) 
presented similar patterns, being impacted the most by 
Proteobacteria, Firmicutes, and Bacteroidetes. In this 
microbiome cell cycle was the pathway being targeted the 
most by microbial proteins. This may be explained by the 
ability of species like Aggregatibacter 
actinomycetemcomitans (under the Proteobacteria phylum) 
and Porphyromonas gingivalis (Firmicutes phylum), to 
induce cell cycle arrest, leading to the downregulation of host 
genes involved in cell cycle regulation [20, 21].  

Lastly, our findings showed that Actinobacteria, 
Firmicutes and Proteobacteria were the phyla with most 
impact on the skin cellular events (Fig. 1, Panel H), which is 
consistent with the literature [22, 23]. We found that the 
pathways being targeted the most in this microbiome were 
cell cycle, metabolism and DNA repair. These are most likely 
explained by the presence of bacterial DNA in the host 
dermis, even when this DNA originates from dead bacteria 
[24, 25]. However, these studies were highly suggestive that 
bacterial cells can indeed colonize the dermis [26]. 

IV. CONCLUSION 

We believe one cannot consider the human being as an 

individual organism, but rather as a multitude. Indeed, it is 

clear that not only human cells and proteins should be 

considered when it comes to systems biology. Humans as an 

ecosystem are constantly evolving, and various intrinsic 

(e.g., ethnicity, age) and extrinsic factors (e.g., habits, 

physical activity, diet) contribute to the development and 

establishment of the microbiomes of each individual. In 

addition, the microbiomes of healthy individuals for the 

same body sites can be dissimilar, rendering the task of 

identifying baseline microbiomes extremely challenging. 

We should also emphasize that knowing which proteins in 

human pathways are being targeted by microbial proteins 

may provide new grounds for the research of specific 

microbial pathogenesis mechanisms. This knowledge would 

prove of utmost interest to the pharmacological and clinical 
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research areas, as it could be used for the development of 

new drugs and diagnostic methods. 

The proposed algorithm consists of a first approach to 

systematically analyze the impact of microbial communities 

in humans. Based on the high degree of consistency between 

the obtained results and the existing literature, we believe the 

herein proposed algorithm has been successful in identifying 

events that actually occur in vivo. 
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