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Abstract— A main challenge in the development of robotic
rehabilitation devices is how to understand patient’s intentions
and adapt to his/her current neuro-physiological capabilities.
A promising approach is the use of electromyographic (EMG)
signals which reflect the actual activation of the muscles during
the movement and, thus, are a direct representation of user’s
movement intention. However, EMGs acquisition is a complex
procedure, requiring trained therapists and, therefore, solutions
based on EMG signals are not easily integrable in devices for
home-rehabilitation.

This work investigates the effectiveness of a subject- and
task-specific EMG model in estimating EMG signals in cyclic
plantar-dorsiflexion movements. Then, the outputs of this model
are used to drive CEINMS toolbox, a state-of-the-art EMG-
driven neuromusculoskeletal model able to predict joint torques
and muscle forces. Preliminary results show that the proposed
methodology preserves the accuracy of the estimates values.

I. INTRODUCTION

Population aging and neurological diseases or injuries
are the main causes of the increasing number of people
with locomotion disorders. Despite the high effectiveness of
therapists-based rehabilitation on restoring motor functional-
ities [5], [8], high cost and strong dependency on therapist
skills limit their availability to the patients. To decrease the
cost and speed up the recovery process, robotic technologies
such as automated treadmill [4] or active orthoses [1], have
been increasingly introduced in rehabilitation to assist the
patient in the repetition of exercises. However, most of
these devices are based on preprogrammed control strategy
where the patient is not actively involved, reducing treat-
ment effectiveness. Furthermore, subject monitoring is still
demanded to the therapist during periodic manipulation. The
development of a new generation of rehabilitation devices
aims at overcoming these limitations, through the capability
of understanding patient’s intention and adapt to his/her
current neuro-physiological state.

Knowledge of internal muscle forces, joint moments,
and other dynamic variables during the movement could
definitely help in monitoring patient condition, intention,
and improvement during the rehabilitation treatment thus
improving its effectiveness. Since in vivo muscle force
measurements are not feasible, a promising solution is to
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develop approaches based on EMG-driven NeuroMuscu-
loSkeletal (NMS) models [2]. These models (Sec. II-E) take
as input electromyographic (EMG) signals, i.e. the electrical
potential generated in the muscles, and estimate joint torques,
muscle forces, and other internal dynamic parameters. Main
advantages of using EMG signals are the strongly correlation
with the subject’s motion intention and the non-invasive
acquisition procedure. However, EMGs quality is highly
dependent on sensors placement, thus requiring professional
skills, and can also be affected by electric and magnetic
noise. These issues definitely prevent the possibility of using
the approach in home-rehabilitation.

This scenario justifies the methodology proposed in this
work. The objective is to investigate the possibility to use
EMGs estimated by a model instead of the directly acquired
ones as input for the EMG-driven NMS model. While the
highly variability of EMG signals prevents to develop an
EMG model for the general case, we tackled only the simple
and cyclic movement of plantar-dorsiflexion (P-DF). Despite
being a simple and cyclic movement, it has a great relevance
in rehabilitation of ankle injuries as sprains or fractures [7].
After the development of the EMG model to estimate syn-
thesized signals, those are used to drive CEINMS, an EMG-
driven NMS modeling toolbox able to predict joint torques
and muscle forces. This paper reports the first assessment of
the methodology with an healthy subject performing a P-DF
cyclic movement at six different controlled speeds. Previous
results on five subjects performing P-DF movements already
demonstrated that it is possible to achieve a good accuracy
in EMGs prediction [9]. This work evaluates the possibility
of their use as input for EMG-driven neuromusculoskeletal
model to predict ankle torque. The main advantage of the
proposed approach is that, once a subject- and task-specific
EMG model has been defined, no EMG recordings are
needed to drive the NMS model. EMG acquisition could,
therefore, be limited to periodical recalibration of the model
to account for patient improvements. Despite its applicability
limited to repetitive movements, the proposed approach
would enable the use of home-rehabilitation devices while
monitoring the patient efforts.

II. METHODS
A. Equipments and Experimental Setup

For this preliminary study, we recruited one healthy sub-
ject, 25 years old, with a body mass of 64kg and a height of
1.75m. The participant had no disorder that could influence
his movements, and provided written informed consent prior
to participation. The study was conducted in accordance
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Fig. 1. (a) Subject on S3P, (b) EMG electrodes placement on the subject [3]

with the Declaration of Helsinki. EMG signals were col-
lected with a EMG-USB2 System (OT Bioelettronica, Turin,
Italy) from the following muscles: Gastrocnemius Lateralis,
Gastrocnemius Medialis, Soleus, Peroneus Longus, Tibialis
Anterior. Electrodes were placed according to SENIAM
recommendation [3]. A System 3 Pro (S3P) dynamometer
(Biodex Corp., Shirley, NY) was used in isokinetic mode
to drive the movement (trajectory and speed) of the subject.
Motor joint torque and kinematic data measured by the S3P
and signals from the EMG amplifier were synchronously
acquired at a sample rate of 2048Hz.

B. Experimental Procedure

The participant was asked to comfortably sit on the S3P
with the right knee at 40◦ and the right foot on the S3P stand
(Fig. 1(a)). Before the acquisition, he was shortly instructed
on the procedure and practiced P-DF movements. Then, the
subject was instructed to perform P-DF movements at the
speed imposed by the S3P producing his maximum effort,
trying somehow to speed up the movement. The subject was
provided with a visual feedback on his current effort to help
in the correct execution of the experiment. Each step was
executed at six different speeds, chosen for feasibility and
safeness for the subject: 30, 45, 60, 75, 90, and 120 ◦/s. For
each step and speed, at least five acquisition were registered,
each one including four P-DF repetitions. With the objective
of evaluating the effect of the fatigue, additional data were
acquired repeating the same acquisition setup but asking the
subject to modulate his effort at 75, 50, 25 percent of his
maximum following the visual feedback.

C. Data Processing

Raw EMG signals were high-pass filtered (Butterworth, IV
order, 300Hz), rectified, and low-pass filtered (Butterworth,
IV order, 8Hz) [6]. The resulting EMG linear envelopes were
then normalized using the maximum EMG peak through all
the acquisition.

D. EMG Model

The EMG model aims at estimating EMG signals from
ankle speed and position during P-DF movements (Fig. 2).

Starting from nine P-DF cycles for each speed, mean EMG
curves for each muscle were first computed. Then, curves
at different speeds were time warped over 2000 samples to
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Fig. 2. EMG model schema.

Fig. 3. Schematic structure of the EMG-driven NeuroMusculoSkeletal
model.

release the time dependence (Eq. 1) and obtain EMG values
for muscle m at speed s as a function of the sample k:

emgm,s(t)→ emgm,s(k) (1)

Then, the resulting curves were combined to obtain a single
average curve for each muscle:

EMGm(k) =
∑s emgm,s(k)

Ns
(2)

From these curves, it is possible to estimate EMGs during
the rehabilitation treatment. Starting from the time required
to complete a P-DF cycle (input of the model), for each
muscle, the previously computed average EMG curve is un-
warped to match the current speed thus generating a first
prediction of EMG signals. Finally, a shape factor is also
introduced to account for the speed dependence of the EMG
signal amplitude.

E. EMG-driven NMS Modeling

To estimate ankle torque and muscle forces expressed by
the subject we used a subject-specific EMG-driven Neuro-
MusculoSkeletal (NMS) model. This model reproduces the
process with which muscles transform neural commands
into movement and can be used to estimate the forces
generated inside the human body. Fig. 3 shows a schematic
representation of an EMG-driven NMS model, composed
of four blocks. The Musculotendon Kinematics block uses
the joint angles measured by the S3P to compute muscu-
lotendon lengths and moment arms of the muscles. The
Muscle Activation Dynamics block transforms normalized
EMG signals into muscle activations, accounting for the
non linearity that exists between muscle excitations and
muscle forces. It also introduces a recursive filter to represent
the muscle twitch response [6]. The Muscle Contraction
Dynamics block combines together muscle activations and
musculotendon lengths to generate estimates of the forces
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TABLE I
COMPARISON BETWEEN ESTIMATED AND EXPERIMENTAL EMGS AT

DIFFERENT SPEEDS, AVERAGED USING 3 TRIALS FOR EACH MUSCLE.

Speed (◦/s) RMSE ± STD R2± STD
30 0.09 ± 0.028 0.664 ± 0.146
45 0.079 ± 0.02 0.854 ± 0.07
60 0.072 ± 0.015 0.882 ±0.06
75 0.078 ± 0.018 0.9 ± 0.043
90 0.083 ± 0.016 0.879 ± 0.048

120 0.096 ± 0.012 0.861 ± 0.047

produced by the musculotendon units (MTUs). The model
includes a set of muscle parameters, which are initially
estimated from literature or measured from medical images,
and then calibrated as described in [6]. Finally, once the
forces produced by the muscles are available, the Moments
Computation block projects these forces to the desired de-
grees of freedom (DOF). In summary, the EMG-driven NMS
model can estimate muscle forces and joint moments at
multiple DOFs using only 3D joint angles and EMG signals
as inputs, either measured or estimated, as in our case.
The implementation of this step is based on two different
tools: the Calibrated EMG-Informed NMS Modelling Tool-
box (CEINMS)1, a state-of-the-art EMG-driven NMS model
we have recently developed; and OpenSim2 to develop a
musculoskeletal anatomical model of the subject.

III. RESULTS

To validate the proposed approach, outputs of the two
models were compared with experimental data from vali-
dation trials not previously used to build the models. First,
EMG signals estimated by the model (Synt. EMGs) were
compared with experimental ones to assess their accuracy
and reliability, spanning all the muscles and different speeds.
Then, both synthetic and experimental EMGs were used as
input for the NMS model to predict ankle joint moments
and muscle forces. Validation was performed comparing pre-
dicted and experimental ankle torques since muscle forces,
albeit the most interesting output, cannot be measured in a
non-invasive way.

A. EMG Model Validation

EMGs estimated by the model (Synt. EMG) were com-
pared with measured ones for trials not used during the
model creation procedure (Fig. 4). Tab. I reports root mean
square error (RMSE) and Pearson product moment correla-
tion R2 for the different speeds. Achieved performance are
quite promising, both in terms of R2 and RMSE for almost
every tested speed. Slightly worst performance at the lowest
speed (R2 close to 0.66) is possibly due to the difficulties of
the subject in following the S3P at this extremely low speed.
Indeed, Biodex Reference Manual suggests 60◦/s as the
lowest speed for reliable acquisitions of P-DF movements.
However, these estimated EMGs will be useful to assess

1https://simtk.org/home/ceinms
2http://opensim.stanford.edu/

Fig. 4. Comparison between estimated EMG signals and measured ones
for each recorded muscle. Results are reported as a percentage of the P-DF
cycle at speed 60◦/s. Light orange areas reports the ± STD intervals of the
reference.

TABLE II
COMPARISON BETWEEN ESTIMATED AND EXPERIMENTAL EMGS ON

DIFFERENT MUSCLES AVERAGED USING 3 TRIALS FOR EACH SPEED.

Muscle RMSE ± STD R2± STD
Gastrocnemius Lateralis 0.068 ± 0.013 0.876 ± 0.087
Gastrocnemius Medialis 0.069 ± 0.015 0.867 ± 0.088

Peroneus Longus 0.094 ± 0.017 0.789 ±0.128
Soleus 0.089 ± 0.014 0.806 ± 0.139

Tibialis Anterior 0.094 ± 0.023 0.802 ± 0.048

the impact of higher errors on the behavior of NMS model
(Sec. III-B). The analysis of the accuracy of the EMG model
for the different muscles (Tab. II) shows an average RMSE
of 0.083±0.013, i.e. less than 10%. High values were also
achieved for R2 (0.848±0.078), showing a good correlation
between estimated and measured EMGs. Evaluation of ef-
fects of muscles fatigue were also investigated, obtaining no
relevant differences.

B. Torques Validation

The second step of the validation procedure aimed at
assessing the accuracy of the predicted ankle torque when
estimated EMG signals are used as input for the NMS model
(CEINMS) instead of the measured ones. First, torques
predicted using measured EMGs were compared with the
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TABLE III
TORQUE VALIDATION STATISTICAL RESULTS.

Speed
◦/s

Measured Vs
Exp. CEINMS

Synt. CEINMS Vs
Exp. CEINMS

30 RMSE ± STD 14.352 ± 1.818 8.667 ± 0.516
R2 ± STD 0.891 ± 0.031 0.928 ± 0.013

45 RMSE ± STD 13.912 ± 1.747 5.403 ± 1.169
R2 ± STD 0.85 ± 0.03 0.973 ± 0.013

60 RMSE ± STD 15.055 ± 2.095 5.003 ± 1.164
R2 ± STD 0.888 ± 0.019 0.981 ± 0.006

75 RMSE ± STD 12.273 ± 1.33 5.645 ± 1.431
R2 ± STD 0.895 ± 0.024 0.98 ± 0.008

90 RMSE ± STD 12.09 ± 0.679 6.377 ± 1.536
R2 ± STD 0.878 ± 0.014 0.977 ± 0.012

120 RMSE ± STD 12.302 ± 1.26 6.325 ± 1.42
R2 ± STD 0.883 ± 0.023 0.981 ± 0.011

experimental torques measured with the S3P (Tab. III-
”Measured Vs Exp. CEINMS” column). A R2 higher than
0.85 confirm a very good correlation, while RMSE shows
a worst behavior. However, this error is mainly due to the
prediction of the first peak, i.e. when the subject changes
from dorsi to plantarflexion. This was partially expected
since the subject reported difficulties in synchronously follow
the S3P support in this phase, resulting in a experimental
torque mainly due to the S3P contribution. Then, estimated
EMG signals were used as input of the NMS model to
assess the impact on the final predicted torque (Tab. III-
”Synt. CEINMS Vs Exp. CEINMS” column). An overall R2

of 0.97±0.02 and RMSE of 6.24±1.30 are very promising
results for the proposed methodology as also clearly visible
in Fig. 5.

IV. CONCLUSIONS

While EMG-driven NMS models are powerful tools able
to provide information about muscle forces, joint torques,
and other internal dynamic parameters, they require EMG
signals as input. This prevents the use of the tools by
untrained people and, therefore, in home-rehabilitation.

This work investigated the possibility to avoid EMGs
measurements using EMGs estimated with a subject- and
task-specific EMG model. In a previous work we have
already demonstrated the possibility to accurately predict
EMG in cyclic P-DF movements [9]. The preliminary results
of this work demonstrate that the predicted ankle torque
for plantar-dorsiflexion (P-DF) movements does not change
significantly when EMGs estimated by a model are used
as input of the NMS model. This opens the possibility
to monitor patient’s efforts during rehabilitation, allowing
therapists to quantitatively assess the impact of the therapy.
While the proposed approach is only applicable to simple,
cyclic tasks, still the methodology has a high potentiality
due to their relevance in rehabilitation treatments. We are
currently applying this methodology to a larger set of people,
including unhealthy subjects, to assess the reliability and the
intra-subject variability of the obtained results.
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