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Abstract

Here, we investigated EEG-based source-level spectral differences between adolescents with 

sports-related concussions and healthy age matched controls. We transformed resting state EEG 

collected in both groups to the source domain using Independent Component Analysis (ICA) and 

computed the component process power spectra. For group-level analysis in the source domain, 

we used a probabilistic framework, Measure Projection Analysis (MPA), that has advantages over 

parametric k-means clustering of brain sources. MPA revealed that some frontal brain sources in 

the concussed group had significantly more power in the beta band (p<0.005) and significantly 

less delta (p<0.01) and theta band power (p<0.05) than the healthy control group. These results 

suggest that a shift in spectral profile toward higher frequencies in some frontal brain regions 

might distinguish individuals with concussion from healthy controls.

I. Introduction

Sports activities are a major cause of concussions. It has been estimated that 1.6–3.8 million 

sports and recreation related concussions occur each year in the United States [1]. A major 

challenge in the field of neurology is that current neuropsychological, behavioral and 

standard neuroimaging tools are not sensitive to subtle changes in brain structure and 

function, thus making the initial diagnosis of concussion difficult. As a result, many 

adolescents may resume sports activities well before full recovery has occurred, leaving 

them vulnerable to the potentially serious effects of repeated brain trauma during their 

critical period of brain development.

In the last few years there have been new developments in imaging methods and analyses. 

Novel imaging methods are emerging that enable the assessment of the brain structure and 
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function following injury and that may help predict or monitor recovery. An important 

challenge is to identify imaging biomarkers that provide accurate and meaningful diagnostic 

information.

A major issue in EEG signal processing is that signals measured on the scalp surface do not 

each index a single source of brain activity. Each electrode channel records a sum of signals 

from many different brain areas [2]. Accurate separation and localization of the underlying 

brain sources is the so-called EEG inverse problem. High-density EEG systems that 

uniformly cover the scalp surface with a large number of electrodes, combined with modern 

source imaging procedures is increasingly recognized as a powerful tool for source-resolved 

brain activity imaging [3], [4].

Most studies investigating the EEG correlates of concussion have analyzed the scalp channel 

data directly [5], [6], [7]. However, because of volume conduction to and source mixing at 

the electrodes, the EEG sensor signals are simultaneous mixtures of sources located in 

various parts of the cortex. In addition, non-brain source processes including eye 

movements, scalp muscles, head movements, and electrical line noise also contribute to EEG 

signals. On the assumption that the brain and non-brain source activity time series are 

statistically independent, independent component analysis (ICA) can separate individual 

brain and non-brain sources from the scalp mixtures [8]. In this study, we used a powerful 

ICA method, AMICA [9], that has been shown to provide more dipolar brain sources 

together with higher independence compared to other algorithms [10].

Although ICA can extract the source activities and facilitate source localization, group-level 

ICA analysis is nontrivial because of variations across brains and the brain sources extracted 

for each subject. A recent ICA-based concussion study [11] used k-means clustering of 

individual subject independent components (ICs) to investigate brain source cluster 

differences between concussed and non-concussed subjects. Using k-means clustering 

requires choosing a target number of clusters and relative weights for more than one 

measure of IC similarity. Here we made use of a recently developed framework, Measure 

Projection Analysis (MPA), that attempts to avoid these uncertainties[12], [11]. In contrast 

to [11], which used the standard clinical 19-channel scalp montage, we recorded and 

analyzed 64-channel EEG data. A lower number of channels limit the number of brain and 

non-brain sources that can be separated and the accuracy of subsequent source localization 

[13].

II. Methods

A. Participants

Twenty-one adolescent athletes (all male; mean age, 16.5 years) with a clinical diagnosis of 

subacute (≤ 3 months previously) sports-related concussion participated in this study. 

Healthy subjects comprised 33 adolescent soccer players (all male; mean age, 16 years). 

Subject exclusion criteria included focal neurologic deficits and diagnosis or prescription 

medications for neurological or psychiatric conditions. All participants were right-handed. 

Parents of each subject signed an informed consent form that was approved by the 

University of British Columbia.
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B. EEG acquisition protocol

Resting data were collected for five minutes while subjects had their eyes closed. A 64-

channel Hydrogel Geodesic SensorNet (EGI, Eugene, OR) with a Net Amps 300 amplifier 

was used for EEG recording at a sampling rate of 250 Hz. Electrode impedances were 

typically below 50 kΩ.

C. Data processing

1) Preprocessing—Each subject’s EEG signals were bandpass filtered between 0.5 Hz 

and 45 Hz. Channels whose time series were not consistently correlated with any other 

channel (r< 0.8) were discarded. On average, 2–3 channels per subject were rejected. 

Randomly occurring large amplitude artifacts (with power ≥ 3σ w.r.t clean EEG) were 

cleaned using ASR [14].

2) Independent Component Analysis—AMICA [9] was used to separate the scalp 

channel mixtures into maximally independent brain and non-brain sources. Mathematically, 

ICA decomposes EEG channel time series, denoted by Y(t) as Y(t) = AX(t), where X(t) is 

the set of time series representing source activations and A is a square matrix storing in its i-
th column ai relative projection weights of the i-th source to each scalp channel. ICA 

optimizes A such that X(t) = A−1Y (t), the component time series, are statistically as 

independent as possible. Columns of A can then be used to locate each source while rows of 

X can be used to calculate EEG source activity measures such as ERPs, ERSPs or spectra.

The DIPFIT 1 toolbox in EEGLAB [15] was used to locate the equivalent dipole for each IC 

(independent component) in the MNI (Montreal Neurological Institute) head model. ICs 

whose best-fitting dipole accounted for less than %85 of the spatial variance in their scalp 

projection (column of A), as well as sources whose equivalent dipoles were outside the brain 

were regarded as non-brain sources and excluded from further analysis. All IC’s were 

initially clustered with respect to their power spectra for the sole purpose of batch rejection 

of artifact IC’s. Visual inspection of power spectra of the resulting cluster centroid and the 

cluster IC scalp maps identified ICs associated with muscle/movement artifacts which were 

also excluded from further analysis. In total, 665 ICs were retained, on average ~12 ICs per 

subject.

III. Measure Projection

A. K-means IC clustering

In most EEG studies, the properties of individual subject ICs, including their scalp 

projection patterns (scalp maps) and associated dipole locations, are never the same and thus 

require some form of clustering to identify equivalency classes across subjects. As pointed 

out in [11], [12] common approaches for multi-subject source-level analysis, such as k-

means IC clustering, have some drawbacks. It is not clear which IC features or measures to 

use for clustering or how different measures should be weighted. In [11], it was shown that 

clustering on source equivalent dipole locations, on IC spatial extents as estimated by 

1Available at http://sccn.ucsd.edu/wiki/A08: DIPFIT
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sLORETA, or on IC scalp maps gave component clusters exhibiting different spectral group 

differences. Assuming some fixed number of clusters is another requirement of k-means 

clustering that can dramatically affect the nature of the resulting clusters and the numbers of 

ICs included/excluded.

B. Measure Projection

Measure Projection Analysis (MPA) framework [12] was developed to reduce some 

drawbacks of other clustering methods. First, MPA divides the (MNI) template head model 

into a cubic grid with 8-mm spacing comprising 3,908 brain voxels. MPA automatically 

identifies ICs accounting for eye movement artifact using EyeCatch [16] and excludes them 

from the analysis. Then, given some activity measure for each IC localized with an 

equivalent current dipole, each such measure is first smoothed out across neighboring voxels 

to take into account expected inaccuracy in source dipole locations and between-subject 

anatomical differences. Here, we used mean-subtracted log spectra as the MPA measure. 

Subtracting the mean log spectrum is equivalent to inversely scaling each IC time-series by 

its mean log power.

Denoting the set of voxels in the MNI model by V and one such voxel by v, MPA calculates 

the projected measure [M(v)] at every v ∈ V as

𝔼[M(v)] =
∑i = 1

n Pi(v)Mi

∑i = 1
n Pi(v)

(1)

where n is the number of ICs in the study. Thus, a spatially-weighted average measure is 

calculated for each brain voxel, for which the contribution of each IC is determined by the 

distance between the voxel and the IC equivalent dipole (truncated Gaussian Pi centered at 

equivalent dipole vi). Next, brain voxels whose projected measure values are consistent with 

those at nearby voxels are identified using measure convergence C(v), defined in [12] as

C(v) = 𝔼[S(v)] =
∑i, 1

n Pi(v)P j(v)Si, j
∑i, j Pi(v)P j(v) (2)

where Si,j is a pairwise IC similarity measure. Estimated measure convergence values C(v) 

are assigned significance values after bootstrapping using a surrogate distribution of 

estimates obtained by randomly re-assigning (with replacement) measure vectors to IC 

dipole locations. Here, we used a statistical consistency threshold of (p<0.05). See Fig. 1a. 

Significantly consistent voxels may then be clustered into ”domains” using affinity 

propagation [17] based on the similarity of their projected measures. Affinity propagation 

automatically determines the number of clusters and outliers consistent with a given domain 

disparity threshold. Here, we set the maximum similarity threshold between domains to 0.9. 
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Finally, locations or other properties of the identified regional domains of interest may be 

investigated to assess group-level measure differences.

IV. Results

Affinity propagation clustering initially produced 15 domains. Only 5 domains remained 

after removal of very small domains including less than 6 voxels. See Fig. 1b. The previous 

IC-based spectral analysis of concussion reported significant group differences in some 

frontal brain areas [11]. Similarly, we found a cluster located in frontal cortex (Domain 4, 

centered in the superior frontal gyrus), that contained 48 ICs, 13 ICs from 10 or the 21 

concussed subjects (%47.61), and 36 ICs from 21 (%63.63) of the control subjects. Scalp 

maps of some of the ICs contributing to the domain, as well as their associated equivalent 

dipole locations, are shown in Figs. 3 and 4. This domain includes voxels from both the right 

and left hemispheres of the MNI model, although the majority (%85) are on the left side. 

Mean projected domain spectra for both groups are shown in Fig. 2.

We divided the spectrum into frequency bands delta (2–4Hz), theta (4–8Hz), alpha (8–

13Hz), beta (13–30Hz), gamma (30–45Hz) and calculated mean log power in these bands 

for the ICs contributing to each domain. Bootstrap statistics (using 5,000 iterations) revealed 

significant group differences for Domain 4 in the delta, theta and beta bands. Contributing 

ICs from the concussed group had significantly less delta and theta band power (p <0.01, p 

<0.05 respectively) but higher beta power (p <0.005) than contributing ICs from the control 

group.

V. Discussion

Our findings partly overlap results of the previous ICA-based concussion study [11]. We 

also found significantly more beta band power in or near frontopolar cortex in the concussed 

group during resting state EEG. However, unlike the previous study, we observed 

significantly less delta and theta power in the concussed group, although EEG spectral 

slowing has been a commonly reported finding in traumatic brain injury patients. Our 

finding of power increases and decreases in specific bands in the frontal cortex parallels 

previous fMRI studies on concussed adolescents that have shown both increases and 

decreases in functional connectivity within the frontal regions of the brain [18]. These region 

specific changes in the frontal areas may reflect parallel processes of response to injury and 

recovery and may be signature of acute concussion. Decreased power at the lower end of the 

EEG spectrum, together with higher beta power are associated with increased alertness and 

attentional focus. As pointed out in [19], this can be explained by a mechanism that mTBI 

patients use to compensate for cognitive deficits arising from their brain injury. Possibly this 

frequency profile might be used to define a single measure that could differentiate 

individuals with concussion from still-healthy controls at time of injury, and/or might be 

used as an index of recovery from mild traumatic brain injury (mTBI).
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VI. Conclusions

In this study, we investigated the effects of sports-related concussion on source-resolved 

EEG spectral measures during eyes-closed rest. Unlike most studies in this field, we used 

ICA decomposition of high-density scalp data to clean EEG data of artifacts and to 

transform our analysis domain from scalp sensors to brain sources. Rather than using k-

means clustering methods for group-level source analysis, we used a probabilistic 

framework, Measure Projection Analysis, that takes into account expected inaccuracy in 

source location estimates and inter-subject differences in brain anatomy. Our results 

suggested that the concussed group had significantly less delta and theta band power and 

higher beta power in or near a medial frontal brain area.
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Fig. 1. 
(a) Voxels that show significantly consistent spectra among nearby source locations (p < 
0.05). (b) Domains created by affinity propagation clustering with maximum similarity 

threshold across domains set to 0.9. Domain 4 is the only domain in the frontal part of the 

brain.
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Fig. 2. 
Measure-projected IC log spectra for the concussed and control groups at the maximally 

centered exemplar IC for Domain 4. Shaded regions indicate the standard error of the mean. 

Black lines correspond to spectral bands with a significant group difference. ICs from the 

concussed group had significantly less power in the delta and theta bands during eyes-closed 

rest (p < 0.01 and p < 0.05 respectively) as well as more power in the beta band (p < 0.005) 

relative to control subjects.
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Fig. 3. 
Scalp maps of highest contributing 9 sources to Domain 4.
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Fig. 4. 
DIPFIT localized equivalent dipoles for 9 highest contributing IC’s for Domain 4.
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