Abstract:
In this paper, we first presents a high accuracy epileptic electroencephalogram (EEG) classification algorithm. EEG data of epilepsy patients are preprocessed, segmented,...Show MoreMetadata
Abstract:
In this paper, we first presents a high accuracy epileptic electroencephalogram (EEG) classification algorithm. EEG data of epilepsy patients are preprocessed, segmented, and decomposed to intrinsic mode functions, from which features are extracted. Two classifiers are trained based on linear discriminant analysis (LDA) to classify EEG data into three types, i.e., normal, spike, and seizure. We further in-depth investigate the changes of the decision values in LDA on continuous EEG data. An epileptic EEG visualization and sonification algorithm is proposed to provide both temporal and spatial information of spike and seizure of epilepsy patients. In the experiment, EEG data of six subjects (two normal and four seizure patients) are included. The experiment result shows the proposed epileptic EEG classification algorithm achieves high accuracy. As well, the visualization and sonification algorithm exhibits a great help in nursing seizure patients and localizing the area of seizures.
Published in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 25-29 August 2015
Date Added to IEEE Xplore: 05 November 2015
ISBN Information:
ISSN Information:
PubMed ID: 26737286