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Characterization of a Multi-User Indoor Positioning System
Based on Low Cost Depth Vision (Kinect) for Monitoring
Human Activity in a Smart Home

Loic Sevrin, Norbert Noury, Nacer Abouchi, Fabrice Jumel, Bertrand Massot, and Jacques Saraydaryan

Abstract— An increasing number of systems use indoor
positioning for many scenarios such as asset tracking, health
care, games, manufacturing, logistics, shopping, and security.
Many technologies are available and the use of depth cameras
is becoming more and more attractive as this kind of device
becomes affordable and easy to handle. This paper contributes
to the effort of creating an indoor positioning system based
on low cost depth cameras (Kinect). A method is proposed to
optimize the calibration of the depth cameras, to describe the
multi-camera data fusion and to specify a global positioning
projection to maintain the compatibility with outdoor position-
ing systems.

The monitoring of the people trajectories at home is intended
for the early detection of a shift in daily activities which
highlights disabilities and loss of autonomy. This system is
meant to improve homecare health management at home for a
better end of life at a sustainable cost for the community.

I. INTRODUCTION

With aging, a subject is likely to suffer multiple chronic
diseases and a reduction in physical activity. The combi-
nation of these two effects induces a reduction in daily
activities, progressive loss in autonomy, and eventually in-
ability for an independent living if appropriate adaptations
are not foreseen. A strong relationship between health status,
activity, and autonomy was showed [1]. Furthermore, the au-
tonomy of the elderly subject relies on his ability to perform
the basic actions involved in his daily living. Thus there is
a real interest in tracking his daily activity together with the
main physiological parameters (i.e. cardiac frequency, blood
pressure, weight, etc.) directly at home to provide an efficient
health monitoring [2].

Since most human activities at home are attached to rooms
and to interactions with equipments (i.e. to use the shower
in the bathroom, to sleep on the bed in the bedroom, etc.),
an activity monitoring system must be first able to describe
the position of the subjects relatively to rooms and tools.
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TABLE I
DESIGN CONSTRAINTS SUMMARY

spacial resolution of half a meter
localize several people simultaneously
low invasive
low intrusive
deployment in existing flat
lower cost than a nursing home

technical constraints

ergonomic constraints

economic constraints

After a state of the art of existing indoor positioning system,
the designed system based on low cost depth vision will be
described, validated over a series of tests and discussed.

A. Problem constraints

As localization is mainly descriptive in terms of space
(in which room) and interaction (with which equipment or
person), we shall consider that a minimum resolution of
half a meter is needed since it matches an human reach.
Furthermore, since several people can be at the same time
in the apartment, the localization system must be able to
separate several users (possibly 5) in order to differentiate
their individual activities whether these people are collabo-
rating or acting independently. Multi-user tracking based on
ubiquitous sensors positioned everywhere in the house has
already been performed [3]. This paper proposes a system
using less sensors while being more precise on the position
an enabling the detection of social interaction. In addition,
the system must remain low intrusive and invasive in order
to reduce the impact on the daily activities of the subjects.
Finally, the system cost must remain limited. Although this
system is a proof of concept, not yet fulfilling this last
limitation, once produced at large scale, it shall be less
expensive than renting a room in a nursing home.

B. Comparison of existing indoor positioning systems

Once those specifications were established (table m) sev-
eral location tracking technologies had to be compared to
select the best choice. A survey of active and passive indoor
localization systems [4] classifies those technologies in two
main branches: systems including an embedded wearable
device and systems without, which has a great impact on
the acceptability.

Some of the embedded solutions such as Ubisense [5],
Ekahau RTLS [6] and Active Bats [7] from this survey are
compliant with most of our specifications; but these are inva-
sive and hence will be avoided if possible, even if it would be



an advantage for multiple users separation and identification.
Moreover, the embedded device is almost always active and
thus powered on. This characteristic implies the need for a
battery and a limited lifetime. A last disadvantage of these
embedded systems is the inability to locate visitors who do
not have the embedded device, which is quite limiting in our
case.

On the other side, among the systems without any embed-
ded part, a special floor composed of many tiles [8] can use
physical contact to track people. The capacitance between
floor tiles changes when someone walks on a tile. This
system resolution is good enough but it is very expensive
and complex to install in a pre-existing apartment. A second
solution, widely used in smart homes, including to study
circadian cycles [13] is based on passive infrared sensors
(PIR) which are very affordable. These sensors perform
well when tracking one user but not when several users
are close to each other. Computer vision [10] based on
stereo color cameras can get a depth image of the room and
localize people. Unfortunately, the depth image resolution
does not allow to differentiate two people close to each other,
especially in low light. A similar approach was used to track
construction workers [11] using a more advanced device:
a Kinect [14]. The data fusion with two Kinects has been
performed earlier [12], but the cameras have to be parallel
and the system can only localize two people at the same
time. The Kinect is mainly composed of a color camera,
a depth camera, and several microphones. Compared to the
stereo cameras, the Kinect depth camera gives the resolution
needed to localize and separate up to six people close to
each other. A positioning system based on several Kinect
depth cameras is non invasive, low intrusive, and can be
installed in a pre-existing apartment with the provision of
accessing electrical power plugs. Additionally, the choice of
the Kinect is a low cost approach; i.e. an existing and widely
spread technology is reused in a way which was not planned
initially (it was designed as a motion sensor for games)
providing the support of a large community and limiting the
device price. Existing libraries can also be used to remove the
cost of developing associated software. For all these reasons,
this passive location tracking system based on Kinect depth
cameras was chosen for our indoor location tacking system.
The positioning systems comparison is summarized in table
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II. MATERIALS AND METHODS
A. The Sensor

The Kinect is a motion sensor, designed by Microsoft
Inc. and released in November 2010 to be used as a remote
control for the Xbox 360 video game console. It is composed
of several sensors (Fig. m): a color camera (Color CMOS,
VNA38209015), a depth camera composed of an IR pro-
jector (0G12/0956/D306/JGOSA) combined to an IR camera
(IR CMOS, Microsoft/X853750001/VCA379C7130), and an
array of four microphones. The infrared camera and the color
camera have a definition of 640 x 480 pixels. The angle
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Fig. 1. Kinect sensors

of view is 60° horizontal and 45° vertical. The device is
designed to be used in a range of 0.5 m to 5 m from it.

B. Positioning in a unified landmark

Each Kinect is directly connected to a computer running
the OpenNI software [15]. OpenNI localizes the center of
mass of the people in the camera’s field of view. These 3D
coordinates are in the Kinect’s own landmark. We use several
Kinects to cover the whole flat. Hence, the trajectories of
the same person seen by several depth cameras must be
compared and then merged. For this purpose, a projection
on a unified landmark is needed. A reference landmark
usable in the whole France is selected : the Lambert zone
IT (EPSG:27572) [16]. This projection grants the ability to
compare the trajectories while maintaining the compatibility
with outdoor positioning systems like the GPS.

OpenNI extracts the position of a body’s center of mass
from the images of the depth camera. Thus, if a person is
partially hidden (i.e. behind a desk), his center of mass is
wrongly located along the vertical axis. For this reason, the
3D positioning has been downgraded to a 2D positioning and
the vertical axis has been neglected to remove measurement
errors while staying compliant with the previously defined
specifications.

Considering one of the depth cameras landmarks, a two
axes coordinates must be converted in another two axes
coordinates. A simple and efficient linear interpolation is
used here. The position, orientation, and tilt of the Kinect
are not needed, which is a great advantage as these measures
are not easily accessible. However, those Kinect positioning
data influence the linear interpolation coefficients and can be
retrieved from these coefficients.

Considering the person 2D position from the depth camera
point of view is (Zcams Zecam), and the position in the unified
landmark is (Zyni fieds Yunified), the equation are:

LTynified = X1Tcam + a2Zcam + Q3

Yunified = B1Zeam + B2Zcam + B3

Hence, six coefficients must be computed, which means
that six independent equations are needed. Knowing one
position coordinates in both landmark gives two equations.
Thus, knowing three independent positions on both land-
marks gives the six needed equations and coefficients. Those
positions are named calibration points.

They are initially positioned in the reference landmark.
Then, the equivalent location in the Kinect landmark is
measured using OpenNI.



TABLE 11
COMPARISON OF INDOOR POSITIONING SYSTEMS ADAPTED FROM [4]

Positioning technologies | Resolution Cost Multi-person localization | Invasive | Intrusive | Deployment in existing home

Actimetric floor [8] 40 cm Medium Yes No No No
Passive infrared [9] 50 cm Low Yes No No Yes
Stereo cameras [10] 10 cm Medium Yes No Low Yes
Depth cameras [11] 10 cm Low Yes No Low Yes
Kinect [12] 14 cm Low Yes No Low Yes
Ubisense [5] 30 cm Medium Yes Yes Low Yes
Ekahau RTLS [6] 2m Medium No Yes Low Yes
Active Bats [7] 9 cm Medium Yes Yes Low Yes

variable along the Kinect’s field of view, the quality factor

K2 includes the quality of the two measures which corresponds

to the minimum distance to the calibration points or their

sl SWon e, 8 gorey K1 barycenter. The quality of a measure is calculated as follows:

*ae ""u
desk desk * door Qz measure = 1 — min(dto calibration points; dmaz)/dmaz
where the distances are in meters. d,,q, can be adapted to
the environment. It was set to 2 m in this room from our
— experimental data.

Fig. 2. Projected trajectories from two kinects, K1 (bright green trace) and
K2 (dark red trace) in an office

C. Merging trajectories

Several depth cameras are needed to cover the area of an
apartment. Hence, the system must pair the trajectories seen
by two different Kinects but referring to the same person.
An example of a person successive positions, projected in
the unified landmark previously defined, is shown in Fig.
[2l In the pictured room, the two Kinects are represented as
diamonds K1 and K2. K1 is pointing to the left of the map
and K2 to the right of the map. Someone entered the room
and walked through the room from the door on the right to
the other side, going around the desks in the center. One can
see in bright green and dark red the trajectories of this person
detected by the two Kinects, K1 and K2 respectively. Since
K1 is pointing to the left, it cannot see the person entering
the room, whereas K2 can. Thanks to the projections on a
unified landmark, a clear link between the two trajectories
can be established (Fig. [2).

Next, the two previous trajectories must be automatically
paired in order to merge them and recover the full trajectory
of the studied subject. To pair trajectories, the room’s area
common to both Kinects field of view was used. In this area,
the positions measured by the two Kinects were compared. If
the correlation between the two trajectories is high enough,
these may be merged in one. As will be detailed in section [[TI}
a threshold on the correlation factor is not sufficient to decide
when to merge trajectories, but it removes the impossible
matches. Then, a comparison between the correlation factors
provides the right peering operations.

The correlation C; between two points of the trajectory is
the product of a quality factor ); € [0,1] and a distance
factor D; €] — oo, 1]. The measurement precision being

Also, the two measures are not sampled at the exact same
time. Hence the time delay between the two measures, is
included in the quality factor calculation:

Qi time — max(o, 1-— 2At2)

Where At is in seconds.

Then the quality factor for an association of two samples
becomes:

Qi = Qi measure 1 X Qz measure 2 X Qi time

As explained above, @; € [0,1] where 1 is the best quality.
The distance factor D); is calculated as follow:
2
D; = (1 - dbetween pmﬁnts)
where the distance is in meters. Consequently, D; is close to
1 when the two measured positions are close and becomes
negative when they are further away from each other. Even-

tually, the correlation C' between the two trajectories is the
sum of the C;.
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Close positions with good quality factor will result in an
increase of the correlation sum. On the contrary, few samples
showing that the two positions are not corresponding at
all will decrease the correlation sum to a negative value.
The threshold of the correlation sum to consider merging
trajectories was set empirically from our experimental data.
If the correlation between two trajectories does not reach the
threshold, those cannot be merged. Otherwise, the correlation
factors are compared and the highest one is chosen for the
trajectory peering.
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III. EXPERIMENTATION AND VALIDATION

A. Selecting the calibration points

The selection of calibration points is of major importance
to create the projection of each Kinect landmark in the uni-
fied landmark. Hence, the error introduced by this projection
partly rely on the choice of this calibration points. In order
to find out the best way to select the three calibration points,
a comparison was made. This experience uses a grid on
the floor and one depth camera. The grid is composed of
forty-seven points regularly positioned, between one and five
meters to the camera. A person stands successively on each
point of the grid and his position relatively to the depth
camera is measured using OpenNI. As in the calibration
process, for each point of the grid, the coordinates are known
in both landmarks. Hence, any set of three points can be used
to do the projection from the Kinect landmark to reference
one. For every set of three points, this projection is done.
One of the projection results is shown in Fig. 3] where the
reference positions are stars and the interpolated positions
from the depth camera data are circles.

The mean error (the distance between the reference point
and the interpolated one) for all other points is measured.
Depending on the three points selected to make the linear
interpolation, the mean error can be lower than half a meter,
but it can also be above three meters. Hence, an indicator is
needed to select the best interpolation points, without having
to use this grid of points every time.

For every set of three calibration points, the measured
mean error was compared to the area of the triangle created
by these three calibration points. The result is shown in Fig.
[ The influence of the area is clear. The wider the area
is, the lower the upper bound will be. This demonstrates,
we can reduce the error introduced by the interpolation by
maximizing the area formed by the three selected calibration
points.

The same comparison was made between the mean error
and the perimeter of the triangle. The result is shown in Fig.
[l The link between the perimeter and the error is not evident.
This exhibits the relevance of the area indicator to select the
best calibration points in order to lower the introduced error.
This link is logical since aligned points would introduce an
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Fig. 5. Influence of the distance between points

important error in the perpendicular direction and since the
further the points are, the lower the measurement error bias
should be.

In the office used for the test, the area of the triangle
formed by the three calibration points of the depth camera K1
is 2.5 m? and for K2, 1.5 m2. Hence, the mean error should
be lower than 0.2 m is both cases. This result also validates
the projection method as it respects our initial specifications
of a spacial resolution below the half-meter.

B. Ability to separate two people

As proposed in introduction, this system must be able to
separate the trajectories of two people following each other.
To validate this capacity, a time offset was introduced on a
sampled trajectory in order to simulate two people following
exactly the same path which would be the worst case. The
results are shown in Fig. [6]

When the offset is one second, the correlation drops down
from 21.4 to 13.5. This result shows that, comparing the
correlations, the trajectory merging method is able to separate
two people following each other closely (one second offset
is equivalent to about one meter at normal walking speed).

IV. DISCUSSION

The proposed location tracking system is based on ex-
isting depth camera and open source software to lower the
cost, ensure sustainability, and benefit from the community
collaboration. The low cost approach, including the deviation
of the initial use of the Kinect, gave the ability to have an
operative system much quicker than with a full development
from scratch with well reduced expenses. No equipment has
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Fig. 6. Influence of a time offset on a camera

to be worn by the tracked people. This way, the system is
even able to locate unknown visitors. The drawback of using
several Kinect depth cameras is the need of one computer
per camera and thus, of a power line everywhere a Kinect is
installed.

The tests performed on one experimental trajectory seen
by two depth cameras are encouraging. Those tests guided
the choice of the empirical threshold used in the trajectory
merging process. Yet, a larger set of scenarios is needed in
order to fully validate the capacity of the system when facing
several kinds of activity. The area common to two cameras
will also vary as more rooms are equipped and the threshold
will have to be adapted to these parameters.

The images taken by the cameras are always processed on
the computer linked to the Kinect, never stored or transfered
over the network. This should reassure users on potential
loss in privacy, even if some may still consider the cameras
intrusive.

Moreover, being able to track several users in an apartment
impose the ability to identify the detected people. Otherwise,
it would be impossible to associate the same trajectory
to someone going in and out the apartment. Hence, an
identification module must be added to the location tracking
system. As a first step, the color camera available in the
Kinect can be used, but it needs an operator to identify
the pictures taken with the color camera. Image processing
systems for face recognition exist but the constraints in terms
of image quality and orientation cannot be reached with a
Kinect camera. Hence, an autonomous identification module,
based on the RFID technology, will be further developed and
integrated in the system.

V. CONCLUSION

The indoor location tracking system presented in this paper
is operational. This low cost system is easy to deploy, very
modular, and able to evolve with technologies. It is non
invasive since no embedded part is worn by the subject and
does not require batteries. The fusion of positioning data is
efficient, being able to differentiate individuals following the
same trajectory.

By locating people relatively to rooms and equipment, the
system provides an efficient way to measure, understand,
and monitor people activity along the days. The next step

will be to complete this location process with the identifi-
cation process of the people living in the apartment, and to
recognize a set of life scenarios, leading to a personalized
daily activity tracking system. This will enable a better
understanding of people’s life cycles like circadian ones as
experimented earlier [1], of people’s needs, and to sustain a
longer autonomy at home for the elderly.
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